Bimodal role of Cr3+ ions: the nanoscaled photothermal agent and luminescence thermometry

[1]  A. Bednarkiewicz,et al.  Two-dimentional photo-thermo-polimerisation of MMA with Cr3+ doped nanoheaters , 2023, Materials Research Bulletin.

[2]  V. Lavín,et al.  Temperature invariant ratiometric luminescence manometer based on Cr3+ ions emission , 2022, Chemical Engineering Journal.

[3]  L. Marciniak,et al.  Optical heating and luminescence thermometry combined in a Cr3+-doped YAl3(BO3)4 , 2022, Scientific Reports.

[4]  D. Jaque,et al.  Quantitative Comparison of the Light-to-Heat Conversion Efficiency in Nanomaterials Suitable for Photothermal Therapy , 2022, ACS applied materials & interfaces.

[5]  K. Ledwa,et al.  A novel approach in light-to-heat conversion: Cr3+-based photothermal agent , 2022, Materials Today Chemistry.

[6]  M. Dramićanin,et al.  Luminescence thermometry with transition metal ions. A review , 2022, Coordination Chemistry Reviews.

[7]  S. Kaczmarek,et al.  Chromium Ion Pair Luminescence: A Strategy in Broadband Near-Infrared Light-Emitting Diode Design. , 2021, Journal of the American Chemical Society.

[8]  Z. Ristić,et al.  Temperature sensing using ruby coatings created by plasma electrolytic oxidation , 2021 .

[9]  Liangliang Zhang,et al.  Efficient and Broadband LiGaP2O7:Cr3+ Phosphors for Smart Near‐Infrared Light‐Emitting Diodes , 2021, Laser & Photonics Reviews.

[10]  P. Schuck,et al.  Standardization of Methodology of Light-to-Heat Conversion Efficiency Determination for Colloidal Nanoheaters , 2021, ACS applied materials & interfaces.

[11]  A. Bednarkiewicz,et al.  NIR luminescence lifetime nanothermometry based on phonon assisted Yb3+–Nd3+ energy transfer , 2021, Nanoscale advances.

[12]  J. Ueda,et al.  Predicting the Optical Pressure Sensitivity of 2E → 4A2 Spin-Flip Transition in Cr3+-Doped Crystals , 2021 .

[13]  Jun Lin,et al.  Simultaneous Broadening and Enhancement of Cr3+ Photoluminescence in LiIn2SbO6 by Chemical Unit Cosubstitution: Night-Vision and Near-Infrared Spectroscopy Detection Applications. , 2021, Angewandte Chemie.

[14]  A. Meijerink,et al.  Correlation between the Covalency and the Thermometric Properties of Yb3+/Er3+ Codoped Nanocrystalline Orthophosphates , 2021, The journal of physical chemistry. C, Nanomaterials and interfaces.

[15]  A. Meijerink,et al.  A Theoretical Framework for Ratiometric Single Ion Luminescent Thermometers—Thermodynamic and Kinetic Guidelines for Optimized Performance , 2020, Advanced Theory and Simulations.

[16]  M. Dramićanin Trends in luminescence thermometry , 2020 .

[17]  Artur Bednarkiewicz,et al.  Standardizing luminescence nanothermometry for biomedical applications. , 2020, Nanoscale.

[18]  Jun Jiang,et al.  Strategies to approach high performance in Cr3+-doped phosphors for high-power NIR-LED light sources , 2020, Light: Science & Applications.

[19]  A. Bednarkiewicz,et al.  Non-plasmonic NIR-Activated Photothermal Agents for Photothermal Therapy , 2020 .

[20]  Ghazal Farahavar,et al.  Antibody-guided nanomedicines as novel breakthrough therapeutic, diagnostic and theranostic tools. , 2019, Biomaterials science.

[21]  Zhiguo Zhang,et al.  Highly sensitive fluorescence intensity ratio thermometry by breaking the thermal correlation of two emission centers. , 2019, Optics letters.

[22]  A. Katelnikovas,et al.  Emission spectra tuning of upconverting NaGdF4:20% Yb, 2% Er nanoparticles by Cr3+ co-doping for optical temperature sensing , 2019, Journal of Luminescence.

[23]  Lun Wang,et al.  Core-shell upconversion nanoparticles of type NaGdF4:Yb,Er@NaGdF4:Nd,Yb and sensitized with a NIR dye are a viable probe for luminescence determination of the fraction of water in organic solvents , 2019, Microchimica Acta.

[24]  D. Jaque,et al.  Reliability of rare-earth-doped infrared luminescent nanothermometers. , 2018, Nanoscale.

[25]  Kok Ken Chan,et al.  Advanced Near‐Infrared Light‐Responsive Nanomaterials as Therapeutic Platforms for Cancer Therapy , 2018, Advanced Therapeutics.

[26]  Chongfeng Guo,et al.  Upconverting LuVO4:Nd3+/Yb3+/Er3+@SiO2@Cu2S Hollow Nanoplatforms for Self-monitored Photothermal Ablation. , 2018, ACS applied materials & interfaces.

[27]  D. Jaque,et al.  In Vivo Contactless Brain Nanothermometry , 2018, Advanced Functional Materials.

[28]  L. Liz‐Marzán,et al.  Subtissue Plasmonic Heating Monitored with CaF2:Nd3+,Y3+ Nanothermometers in the Second Biological Window , 2018 .

[29]  Y. Ning,et al.  Improved performance of optical phased arrays assisted by transparent graphene nanoheaters and air trenches , 2018, RSC advances.

[30]  Guangming Lu,et al.  Adjuvant Photothermal Therapy Inhibits Local Recurrences after Breast-Conserving Surgery with Little Skin Damage. , 2017, ACS nano.

[31]  Chongfeng Guo,et al.  808 nm Light-Triggered Thermometer-Heater Upconverting Platform Based on Nd3+-Sensitized Yolk-Shell GdOF@SiO2. , 2017, ACS applied materials & interfaces.

[32]  N. Hassan,et al.  Photothermal conversion efficiency and cytotoxic effect of gold nanorods stabilized with chitosan, alginate and poly(vinyl alcohol). , 2017, Materials science & engineering. C, Materials for biological applications.

[33]  A. Bednarkiewicz,et al.  Heterogeneously Nd3+ doped single nanoparticles for NIR-induced heat conversion, luminescence, and thermometry. , 2017, Nanoscale.

[34]  W. Stręk,et al.  Optimization of highly sensitive YAG:Cr3+,Nd3+ nanocrystal-based luminescent thermometer operating in an optical window of biological tissues. , 2017, Physical chemistry chemical physics : PCCP.

[35]  J. Ueda,et al.  Ratiometric Optical Thermometer Based on Dual Near-Infrared Emission in Cr3+-Doped Bismuth-Based Gallate Host , 2016 .

[36]  W. Stręk,et al.  A new generation of highly sensitive luminescent thermometers operating in the optical window of biological tissues , 2016 .

[37]  Punit Kaur,et al.  Hyperthermia using nanoparticles – Promises and pitfalls , 2016, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[38]  L. Carlos,et al.  Lanthanides in Luminescent Thermometry , 2016 .

[39]  Xiaomin Li,et al.  Photo-induced enhancement of the power factor of Cu2S thermoelectric films , 2015, Scientific Reports.

[40]  J. G. Solé,et al.  Nanoparticles for photothermal therapies. , 2014, Nanoscale.

[41]  Matthew G. Panthani,et al.  Copper selenide nanocrystals for photothermal therapy. , 2011, Nano letters.

[42]  Francisco Sanz-Rodríguez,et al.  Temperature sensing using fluorescent nanothermometers. , 2010, ACS nano.

[43]  J. Hao,et al.  Down- and up-conversion photoluminescence, cathodoluminescence and paramagnetic properties of NaGdF4 : Yb3+,Er3+ submicron disks assembled from primary nanocrystals , 2010 .

[44]  A. Govorov,et al.  Experimental and theoretical studies of light-to-heat conversion and collective heating effects in metal nanoparticle solutions. , 2009, Nano letters.

[45]  Chenghui Liu,et al.  Morphology- and phase-controlled synthesis of monodisperse lanthanide-doped NaGdF4nanocrystals with multicolor photoluminescence , 2009 .

[46]  M. Hoepfner,et al.  Microscale Heat Transfer Transduced by Surface Plasmon Resonant Gold Nanoparticles. , 2007, The journal of physical chemistry. C, Nanomaterials and interfaces.

[47]  Ji-Xin Cheng,et al.  Hyperthermic effects of gold nanorods on tumor cells. , 2007, Nanomedicine.

[48]  K. Krämer,et al.  Structural and spectroscopic characterization of active sites in a family of light-emitting sodium lanthanide tetrafluorides. , 2006, Angewandte Chemie.

[49]  Ya-Wen Zhang,et al.  High-quality sodium rare-earth fluoride nanocrystals: controlled synthesis and optical properties. , 2006, Journal of the American Chemical Society.

[50]  G. Exarhos,et al.  Temperature and pressure dependence of laser induced fluorescence in Sm:YAG—a new pressure calibrant , 1989 .