Karhunen-Loève expansion revisited for vector-valued random fields: Scaling, errors and optimal basis

Due to scaling effects, when dealing with vector-valued random fields, the classical Karhunen-Loeve expansion, which is optimal with respect to the total mean square error, tends to favorize the components of the random field that have the highest signal energy. When these random fields are to be used in mechanical systems, this phenomenon can introduce undesired biases for the results. This paper presents therefore an adaptation of the Karhunen-Loeve expansion that allows us to control these biases and to minimize them. This original decomposition is first analyzed from a theoretical point of view, and is then illustrated on a numerical example.

[1]  Christian Soize Generalized probabilistic approach of uncertainties in computational dynamics using random matrices and polynomial chaos decompositions , 2010 .

[2]  Omar M. Knio,et al.  Spectral Methods for Uncertainty Quantification , 2010 .

[3]  Dongxiao Zhang,et al.  An efficient, high-order perturbation approach for flow in random porous media via Karhunen-Loève and polynomial expansions , 2004 .

[4]  Roger Ghanem,et al.  Simulation of multi-dimensional non-gaussian non-stationary random fields , 2002 .

[5]  Habib N. Najm,et al.  Dimensionality reduction and polynomial chaos acceleration of Bayesian inference in inverse problems , 2008, J. Comput. Phys..

[6]  Stefan Volkwein,et al.  Galerkin proper orthogonal decomposition methods for parabolic problems , 2001, Numerische Mathematik.

[7]  Roger G. Ghanem,et al.  Polynomial chaos representation of spatio-temporal random fields from experimental measurements , 2009, J. Comput. Phys..

[8]  Pol D. Spanos,et al.  Karhunen-Loéve Expansion of Stochastic Processes with a Modified Exponential Covariance Kernel , 2007 .

[9]  Bin Wen,et al.  A multiscale approach for model reduction of random microstructures , 2012 .

[10]  Pol D. Spanos,et al.  Galerkin Sampling Method for Stochastic Mechanics Problems , 1994 .

[11]  G. PERRIN,et al.  Identification of Polynomial Chaos Representations in High Dimension from a Set of Realizations , 2012, SIAM J. Sci. Comput..

[12]  K. Phoon,et al.  Simulation of strongly non-Gaussian processes using Karhunen–Loeve expansion , 2005 .

[13]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[14]  Joseph M. Powers,et al.  A Karhunen-Loève least-squares technique for optimization of geometry of a blunt body in supersonic flow , 2004 .

[15]  H. Matthies,et al.  Finite elements for stochastic media problems , 1999 .

[16]  Hermann G. Matthies,et al.  Galerkin methods for linear and nonlinear elliptic stochastic partial differential equations , 2005 .

[17]  Roger G. Ghanem,et al.  Identification of Bayesian posteriors for coefficients of chaos expansions , 2010, J. Comput. Phys..

[18]  R. Ghanem,et al.  Polynomial chaos decomposition for the simulation of non-gaussian nonstationary stochastic processes , 2002 .

[19]  P. Holmes,et al.  The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows , 1993 .

[20]  Anthony Nouy,et al.  Generalized spectral decomposition for stochastic nonlinear problems , 2009, J. Comput. Phys..

[21]  Jens Nørkær Sørensen,et al.  Evaluation of Proper Orthogonal Decomposition-Based Decomposition Techniques Applied to Parameter-Dependent Nonturbulent Flows , 1999, SIAM J. Sci. Comput..

[22]  Sq Q. Wu,et al.  Statistical moving load identification including uncertainty , 2012 .

[23]  Roger G. Ghanem,et al.  Physical Systems with Random Uncertainties: Chaos Representations with Arbitrary Probability Measure , 2005, SIAM J. Sci. Comput..

[24]  K. Phoon,et al.  Comparison between Karhunen-Loève expansion and translation-based simulation of non-Gaussian processes , 2007 .

[25]  Belinda B. King,et al.  Proper orthogonal decomposition for reduced basis feedback controllers for parabolic equations , 2001 .

[26]  David Ryckelynck,et al.  A priori reduction method for solving the two-dimensional Burgers' equations , 2011, Appl. Math. Comput..

[27]  Kok-Kwang Phoon,et al.  Convergence study of the truncated Karhunen–Loeve expansion for simulation of stochastic processes , 2001 .

[28]  K. Phoon,et al.  Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .

[29]  P. Hansen Numerical tools for analysis and solution of Fredholm integral equations of the first kind , 1992 .

[30]  J. Weese A reliable and fast method for the solution of Fredhol integral equations of the first kind based on Tikhonov regularization , 1992 .

[31]  Xiang Ma,et al.  Kernel principal component analysis for stochastic input model generation , 2010, J. Comput. Phys..

[32]  M.M.R. Williams The eigenfunctions of the Karhunen–Loeve integral equation for a spherical system , 2011 .