Conservative interpolation between volume meshes by local Galerkin projection

The problem of interpolating between discrete fields arises frequently in computational physics. The obvious approach, consistent interpolation, has several drawbacks such as suboptimality, non-conservation, and unsuitability for use with discontinuous discretisations. An alternative, Galerkin projection, remedies these deficiencies; however, its implementation has proven very challenging. This paper presents an algorithm for the local implementation of Galerkin projection of discrete fields between meshes. This algorithm extends naturally to three dimensions and is very efficient.

[1]  Rainald Löhner Robust, Vectorized Search Algorithms for Interpolation on Unstructured Grids , 1995 .

[2]  Simona Perotto,et al.  Anisotropic error estimates for elliptic problems , 2003, Numerische Mathematik.

[3]  Ivan E. Sutherland,et al.  Reentrant polygon clipping , 1974, Commun. ACM.

[4]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[5]  Oubay Hassan,et al.  Investigations into the applicability of adaptive finite element methods to two‐dimensional infinite Prandtl number thermal and thermochemical convection , 2007 .

[6]  Michael T. Heath,et al.  Overlaying surface meshes, part II: topology preservation and feature matching , 2004, Int. J. Comput. Geom. Appl..

[7]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[8]  Joseph O'Rourke,et al.  Handbook of Discrete and Computational Geometry, Second Edition , 1997 .

[9]  P. Villon,et al.  Mechanical field interpolation , 2005 .

[10]  O. C. Zienkiewicz,et al.  Adaptive remeshing for compressible flow computations , 1987 .

[11]  H. Edelsbrunner,et al.  Tetrahedrizing Point Sets in Three Dimensions , 1988, ISSAC.

[12]  Kathryn S. McKinley,et al.  Hoard: a scalable memory allocator for multithreaded applications , 2000, SIGP.

[13]  Traian Iliescu,et al.  Large eddy simulation of stratified mixing in two-dimensional dam-break problem in a rectangular enclosed domain , 2007 .

[14]  Eckart Meiburg,et al.  Analysis and direct numerical simulation of the flow at a gravity-current head. Part 1. Flow topology and front speed for slip and no-slip boundaries , 2000, Journal of Fluid Mechanics.

[15]  Marios Hadjieleftheriou,et al.  R-Trees - A Dynamic Index Structure for Spatial Searching , 2008, ACM SIGSPATIAL International Workshop on Advances in Geographic Information Systems.

[16]  B. P. Leonard,et al.  The ULTIMATE conservative difference scheme applied to unsteady one-dimensional advection , 1991 .

[17]  David M. Mount Geometric Intersection , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[18]  Patrick E. Farrell,et al.  Galerkin projection of discrete fields via supermesh construction , 2009 .

[19]  M. Mehrenberger,et al.  P1‐conservative solution interpolation on unstructured triangular meshes , 2010 .

[20]  Michael T. Heath,et al.  Common‐refinement‐based data transfer between non‐matching meshes in multiphysics simulations , 2004 .

[21]  Ronald Cools,et al.  Algorithm 824: CUBPACK: a package for automatic cubature; framework description , 2003, TOMS.

[22]  David H. Eberly,et al.  3D game engine design - a practical approach to real-time computer graphics , 2000 .

[23]  Raimund Seidel Convex Hull Computations , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[24]  C. Carstensen Clément Interpolation and Its Role in Adaptive Finite Element Error Control , 2006 .

[25]  Yannis Manolopoulos,et al.  R-Trees: Theory and Applications , 2005, Advanced Information and Knowledge Processing.

[26]  Simona Perotto,et al.  Reliability and efficiency of an anisotropic zienkiewicz-zhu error estimator , 2006 .

[27]  Colin J. Cotter,et al.  LBB stability of a mixed Galerkin finite element pair for fluid flow simulations , 2009, J. Comput. Phys..

[28]  P. Tallec,et al.  Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: Momentum and energy conservation, optimal discretization and application to aeroelasticity , 1998 .

[29]  P. Bahr,et al.  Sampling: Theory and Applications , 2020, Applied and Numerical Harmonic Analysis.

[30]  C. C. Pain,et al.  A mixed discontinuous/continuous finite element pair for shallow-water ocean modelling , 2008, 0805.4380.

[31]  Byron W. Hanks Proceedings of the 14th International Meshing Roundtable , 2005 .

[32]  K. P.,et al.  HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .

[33]  P. Clément Approximation by finite element functions using local regularization , 1975 .

[34]  C. C. Pain,et al.  h, r, and hr adaptivity with applications in numerical ocean modelling , 2005 .

[35]  Jürgen Richter-Gebert,et al.  The complexity of finding small triangulations of convex 3-polytopes , 2004, J. Algorithms.

[36]  Michael T. Heath,et al.  Overlaying surface meshes, part I: algorithms , 2004, Int. J. Comput. Geom. Appl..

[37]  Bernard Chazelle An optimal algorithm for intersecting three-dimensional convex polyhedra , 1989, 30th Annual Symposium on Foundations of Computer Science.

[38]  Yu. V. Vasilevskii,et al.  An adaptive algorithm for quasioptimal mesh generation , 1999 .

[39]  Matthew D. Piggott,et al.  Conservative interpolation between unstructured meshes via supermesh construction , 2009 .

[40]  H. Dym,et al.  Operator theory: Advances and applications , 1991 .

[41]  Michael Ian Shamos,et al.  Geometric intersection problems , 1976, 17th Annual Symposium on Foundations of Computer Science (sfcs 1976).

[42]  Martin W. Heinstein,et al.  A three dimensional surface‐to‐surface projection algorithm for non‐coincident domains , 2003 .

[43]  Klaus Gärtner,et al.  Meshing Piecewise Linear Complexes by Constrained Delaunay Tetrahedralizations , 2005, IMR.

[44]  P. Dular,et al.  Using a Galerkin Projection Method for Coupled Problems , 2008, IEEE Transactions on Magnetics.

[45]  C. R. Wilson,et al.  Modelling multiple-material flows on adaptive unstructured meshes. , 2009 .

[46]  Christophe Geuzaine,et al.  A Galerkin projection method for mixed finite elements , 1999 .

[47]  C.R.E. de Oliveira,et al.  Tetrahedral mesh optimisation and adaptivity for steady-state and transient finite element calculations , 2001 .