Effective field theory for Higgs boson plus jet production

We use an effective field theory (EFT) which includes all possible gluon-Higgs dimension-5 and dimension-7 operators to study Higgs boson plus jet production in next-to-leading order QCD. The EFT sheds light on the effect of a finite top quark mass as well as any Beyond-the-Standard Model (BSM) modifications of Higgs-gluon effective couplings. In the gluon channel, the accuracy of the heavy-top approximation for differential distributions arises from the non-interference between the helicity amplitudes of the G^3 h and G^2 h operators in the m_h < p_T limit at lowest order. One dimension-7 operator involving quark bilinears, however, contributes significantly at high p_T, and potentially offers a channel for seeing BSM effects. One-loop renormalization of these operators is determined, allowing resummation of large logarithms via renormalization group running. NLO numerical results at the LHC are presented, which include O(1/m_t^2) contributions in the SM limit.

[1]  H. Deurzen,et al.  NLO QCD corrections to the production of Higgs plus two jets at the LHC , 2012, 1301.0493.

[2]  B. Kniehl,et al.  Decoupling relations to O(a s 3) and their connection to low-energy theorems , 1998 .

[3]  A. Azatov,et al.  Light custodians and Higgs physics in composite models , 2011, 1110.5646.

[4]  L. F. Abbott,et al.  The Background Field Method Beyond One Loop , 1981 .

[5]  F. Campanario,et al.  Higgs boson production in association with three jets via gluon fusion at the LHC: Gluonic contributions , 2013, 1306.1830.

[6]  Kirill Melnikov,et al.  Fully differential Higgs boson production and the di-photon signal through next-to-next-to-leading order , 2005 .

[7]  Testing gluon self-interactions in three-jet events at hadron colliders , 1994, hep-ph/9312363.

[8]  A. Vicini,et al.  Higgs production via gluon fusion in the POWHEG approach in the SM and in the MSSM , 2011, 1111.2854.

[9]  R. Rattazzi,et al.  Theoretical constraints on the Higgs effective couplings , 2009, 0907.5413.

[10]  V. Ravindran,et al.  NNLO corrections to the total cross section for Higgs boson production in hadron-hadron collisions , 2003, hep-ph/0302135.

[11]  L. Dixon Calculating scattering amplitudes efficiently , 1996, hep-ph/9601359.

[12]  T. Gehrmann,et al.  Two-loop QCD corrections to the helicity amplitudes for H → 3 partons , 2011, 1112.3554.

[13]  D. Neill Two-Loop Matching onto Dimension Eight Operators in the Higgs-Glue Sector , 2009, 0908.1573.

[14]  C. Englert,et al.  Resolving the Higgs{Gluon Coupling with Jets , 2014, 1405.7651.

[15]  Christophe Grojean,et al.  Very boosted Higgs in gluon fusion , 2013, 1312.3317.

[16]  S. Dawson,et al.  A Higgs conundrum with vector fermions , 2012, 1205.4733.

[17]  A. Accardi,et al.  Global parton distributions with nuclear and finite- Q 2 corrections , 2012, 1212.1702.

[18]  A. Nelson,et al.  The Littlest Higgs , 2002, hep-ph/0206021.

[19]  S. Dawson Radiative corrections to Higgs boson production , 1991 .

[20]  G. Bell,et al.  Transverse-momentum spectra of electroweak bosons near threshold at NNLO , 2013, 1309.3245.

[21]  I. Low,et al.  Production of a composite Higgs boson , 2010, 1010.2753.

[22]  K. Melnikov,et al.  About the three loop relation between the MS-bar and the pole quark masses , 2000 .

[23]  C. Oleari,et al.  Higgs + 2jets via gluon fusion , 2001 .

[24]  T. Hahn,et al.  Generating Feynman Diagrams and Amplitudes with FeynArts 3 , 2001 .

[25]  M. Steinhauser,et al.  Four-loop decoupling relations for the strong coupling , 2005, hep-ph/0512058.

[26]  J. Zuber,et al.  Ward identities and some clues to the renormalization of gauge-invariant operators , 1975 .

[27]  Classification and one loop renormalization of dimension six and eight operators in quantum gluodynamics , 2002, hep-ph/0204266.

[28]  K. Peters Higgs boson production at the LHC , 2015 .

[29]  M. Peskin Simplifying Multi-Jet QCD Computation , 2011, 1101.2414.

[30]  Dawson,et al.  QCD corrections to Higgs boson production: Nonleading terms in the heavy quark limit. , 1993, Physical review. D, Particles and fields.

[31]  C. Anastasiou,et al.  Higgs Boson Production at Hadron Colliders in NNLO QCD , 2002, hep-ph/0207004.

[32]  T. Neumann,et al.  Top-mass effects in differential Higgs production through gluon fusion at $ O\left( {\alpha_s^4} \right) $ , 2012, 1206.0157.

[33]  S. Dawson,et al.  Unravelling an extended quark sector through multiple Higgs production , 2012, 1210.6663.

[34]  T. Neumann,et al.  Finite top-mass effects in gluon-induced Higgs production with a jet-veto at NNLO , 2014, 1408.6836.

[35]  D. Wyler,et al.  Effective lagrangian analysis of new interactions and flavour conservation , 1986 .

[36]  F. Wilczek,et al.  Low-Energy Manifestations of Heavy Particles: Application to the Neutral Current , 1978 .

[37]  R. Tarrach The renormalization of FF , 1982 .

[38]  Dawson,et al.  Production rates for Higgs boson plus multiple jets at the Superconducting Super Collider. , 1992, Physical review letters.

[39]  W. Keung,et al.  Electroweak and finite quark-mass effects on the Higgs boson transverse momentum distribution , 2009, 0905.2775.

[40]  U. Baur,et al.  Higgs Boson Production at Large Transverse Momentum in Hadronic Collisions , 1990 .

[41]  W. Kilgore One-loop single-real-emission contributions to $pp\to H + X$ at next-to-next-to-next-to-leading order , 2013, 1312.1296.

[42]  F. Campanario,et al.  Gluon-fusion contributions to H+2 jet production , 2001, hep-ph/0108030.

[43]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[44]  Matthias Steinhauser,et al.  Finite top quark mass effects in NNLO Higgs boson production at LHC , 2009, 0911.4662.

[45]  Claude Duhr,et al.  FeynRules 2.0 - A complete toolbox for tree-level phenomenology , 2013, Comput. Phys. Commun..

[46]  R. Harlander,et al.  Next-to-next-to-leading order Higgs production at Hadron Colliders. , 2002, Physical review letters.

[47]  S. Heinemeyer,et al.  MSSM Higgs boson searches at the LHC: benchmark scenarios after the discovery of a Higgs-like particle , 2013, The European Physical Journal C.

[48]  R. Harlander,et al.  Finite top mass effects for hadronic Higgs production at next-to-next-to-leading order , 2009, 0909.3420.

[49]  K. Melnikov,et al.  Higgs boson production in association with a jet at next-to-next-to-leading order in perturbative QCD , 2013, Journal of High Energy Physics.

[50]  E. Salvioni,et al.  Higgs low-energy theorem (and its corrections) in composite models , 2012, 1206.7120.

[51]  E. Witten,et al.  MHV vertices and tree amplitudes in gauge theory , 2004, hep-th/0403047.

[52]  G. Bell,et al.  The transverse-momentum spectrum of Higgs bosons near threshold at NNLO , 2014, 1407.4111.

[53]  Robert V. Harlander,et al.  Probing the nature of the Higgs-gluon coupling , 2013, 1308.2225.

[54]  Bernd A. Kniehl,et al.  Low-energy theorems in Higgs physics , 1995 .

[55]  G. Zanderighi,et al.  Scalar one-loop integrals for QCD , 2007, 0712.1851.

[56]  Adam Martin,et al.  Probing top-partners in Higgs+jets , 2013, 1308.4771.

[57]  Michael Spira,et al.  Soft gluon radiation in Higgs boson production at the LHC , 1996, hep-ph/9611272.

[58]  Massimiliano Grazzini,et al.  Next-to-next-to-leading-order subtraction formalism in hadron collisions and its application to Higgs-boson production at the large hadron collider. , 2007, Physical review letters.

[59]  V. Ravindran,et al.  Next-to-leading order QCD corrections to differential distributions of Higgs boson production in hadron–hadron collisions , 2002, hep-ph/0201114.

[60]  N. Greiner,et al.  Next-to-leading-order QCD corrections to Higgs boson production plus three jets in gluon fusion. , 2013, Physical review letters.

[61]  M. Grazzini,et al.  Heavy-quark mass effects in Higgs boson production at the LHC , 2013, 1306.4581.

[62]  S. Farrington,et al.  Handbook of LHC Higgs Cross Sections: 1. Inclusive Observables , 2011, 1101.0593.