Context- and Output Layer-Dependent Long-Term Ensemble Plasticity in a Sensory Circuit

[1]  Alexandre Pouget,et al.  A probabilistic approach to demixing odors , 2016, Nature Neuroscience.

[2]  Takaki Komiyama,et al.  Balancing the Robustness and Efficiency of Odor Representations during Learning , 2016, Neuron.

[3]  Kyle R. Hansen,et al.  Control of Mitral/Tufted Cell Output by Selective Inhibition among Olfactory Bulb Glomeruli , 2016, Neuron.

[4]  C. Pfeffer,et al.  Disruption of Kcc2-dependent inhibition of olfactory bulb output neurons suggests its importance in odour discrimination , 2016, Nature Communications.

[5]  N. Urban,et al.  Author response: Distinct lateral inhibitory circuits drive parallel processing of sensory information in the mammalian olfactory bulb , 2016 .

[6]  Jeffry S. Isaacson,et al.  Flexible Sensory Representations in Auditory Cortex Driven by Behavioral Relevance , 2015, Neuron.

[7]  I. Rodriguez,et al.  Neuronal pattern separation in the olfactory bulb improves odor discrimination learning , 2015, Nature Neuroscience.

[8]  F. Helmchen,et al.  Pathway-specific reorganization of projection neurons in somatosensory cortex during learning , 2015, Nature Neuroscience.

[9]  Rafael Yuste,et al.  moco: Fast Motion Correction for Calcium Imaging , 2015, Front. Neuroinform..

[10]  Gonzalo H. Otazu,et al.  Cortical Feedback Decorrelates Olfactory Bulb Output in Awake Mice , 2015, Neuron.

[11]  Georg B. Keller,et al.  Learning Enhances Sensory and Multiple Non-sensory Representations in Primary Visual Cortex , 2015, Neuron.

[12]  Zengcai V. Guo,et al.  A motor cortex circuit for motor planning and movement , 2015, Nature.

[13]  Ruqiang Liang,et al.  Monitoring activity in neural circuits with genetically encoded indicators , 2014, Front. Mol. Neurosci..

[14]  Demetris K. Roumis,et al.  Removable cranial windows for long-term imaging in awake mice , 2014, Nature Protocols.

[15]  David E. Moorman,et al.  Motivational activation: a unifying hypothesis of orexin/hypocretin function , 2014, Nature Neuroscience.

[16]  Tobias Rose,et al.  Putting a finishing touch on GECIs , 2014, Front. Mol. Neurosci..

[17]  Yoshikazu Isomura,et al.  Two distinct layer-specific dynamics of cortical ensembles during learning of a motor task , 2014, Nature Neuroscience.

[18]  Simon X. Chen,et al.  Emergence of reproducible spatiotemporal activity during motor learning , 2014, Nature.

[19]  I. Rodriguez,et al.  A population of glomerular glutamatergic neurons controls sensory information transfer in the mouse olfactory bulb , 2014, Nature Communications.

[20]  Alan Carleton,et al.  Long term functional plasticity of sensory inputs mediated by olfactory learning , 2014, eLife.

[21]  T. Komiyama,et al.  Parvalbumin-Expressing Interneurons Linearly Control Olfactory Bulb Output , 2013, Neuron.

[22]  Alan Carleton,et al.  Odor representations in the olfactory bulb evolve after the first breath and persist as an odor afterimage , 2013, Proceedings of the National Academy of Sciences.

[23]  Stefan R. Pulver,et al.  Ultra-sensitive fluorescent proteins for imaging neuronal activity , 2013, Nature.

[24]  F. Helmchen,et al.  Steady or changing? Long-term monitoring of neuronal population activity , 2013, Trends in Neurosciences.

[25]  F. Helmchen,et al.  Behaviour-dependent recruitment of long-range projection neurons in somatosensory cortex , 2013, Nature.

[26]  Tatsuya Yamasoba,et al.  Odorant Response Properties of Individual Neurons in an Olfactory Glomerular Module , 2013, Neuron.

[27]  Matt Wachowiak,et al.  Optical Dissection of Odor Information Processing In Vivo Using GCaMPs Expressed in Specified Cell Types of the Olfactory Bulb , 2013, The Journal of Neuroscience.

[28]  Lacey J. Kitch,et al.  Long-term dynamics of CA1 hippocampal place codes , 2013, Nature Neuroscience.

[29]  Alan Carleton,et al.  Similar Odor Discrimination Behavior in Head-Restrained and Freely Moving Mice , 2012, PloS one.

[30]  T. Komiyama,et al.  Dynamic Sensory Representations in the Olfactory Bulb: Modulation by Wakefulness and Experience , 2012, Neuron.

[31]  Andreas T. Schaefer,et al.  Two Distinct Channels of Olfactory Bulb Output , 2012, Neuron.

[32]  Kei M. Igarashi,et al.  Parallel Mitral and Tufted Cell Pathways Route Distinct Odor Information to Different Targets in the Olfactory Cortex , 2012, The Journal of Neuroscience.

[33]  J. Simon Wiegert,et al.  Multiple dynamic representations in the motor cortex during sensorimotor learning , 2012, Nature.

[34]  Alan Carleton,et al.  Dense representation of natural odorants in the mouse olfactory bulb , 2012, Nature Neuroscience.

[35]  Hongkui Zeng,et al.  A Cre-Dependent GCaMP3 Reporter Mouse for Neuronal Imaging In Vivo , 2012, The Journal of Neuroscience.

[36]  Jennifer D Whitesell,et al.  Mitral Cells in the Olfactory Bulb Are Mainly Excited through a Multistep Signaling Path , 2012, The Journal of Neuroscience.

[37]  Christopher D. Harvey,et al.  Choice-specific sequences in parietal cortex during a virtual-navigation decision task , 2012, Nature.

[38]  Alan Carleton,et al.  Encoding Odorant Identity by Spiking Packets of Rate-Invariant Neurons in Awake Mice , 2012, PloS one.

[39]  Matthew C Smear,et al.  Precise olfactory responses tile the sniff cycle , 2011, Nature Neuroscience.

[40]  A. Mizrahi,et al.  Long-Term Imaging Reveals Dynamic Changes in the Neuronal Composition of the Glomerular Layer , 2011, The Journal of Neuroscience.

[41]  Jennifer D. Whitesell,et al.  Associative Cortex Features in the First Olfactory Brain Relay Station , 2011, Neuron.

[42]  Naoshige Uchida,et al.  Robust Odor Coding via Inhalation-Coupled Transient Activity in the Mammalian Olfactory Bulb , 2010, Neuron.

[43]  Karel Svoboda,et al.  Learning-related fine-scale specificity imaged in motor cortex circuits of behaving mice , 2010, Nature.

[44]  R. Reid,et al.  Chronic Cellular Imaging of Mouse Visual Cortex During Operant Behavior and Passive Viewing , 2010, Front. Cell. Neurosci..

[45]  J. Lacaille,et al.  Noradrenergic Modulation of Intrinsic and Synaptic Properties of Lumbar Motoneurons in the Neonatal Rat Spinal Cord , 2009, Front. Neural Circuits.

[46]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[47]  D. Restrepo,et al.  Profound Context-Dependent Plasticity of Mitral Cell Responses in Olfactory Bulb , 2008, PLoS biology.

[48]  Ryan M Carey,et al.  Rapid Encoding and Perception of Novel Odors in the Rat , 2008, PLoS biology.

[49]  Alan Carleton,et al.  Dynamic Ensemble Odor Coding in the Mammalian Olfactory Bulb: Sensory Information at Different Timescales , 2008, Neuron.

[50]  D. Restrepo,et al.  Adrenergic modulation of olfactory bulb circuitry affects odor discrimination. , 2007, Learning & memory.

[51]  J. White,et al.  Sniffing controls an adaptive filter of sensory input to the olfactory bulb , 2007, Nature Neuroscience.

[52]  E. Yaksi,et al.  Reconstruction of firing rate changes across neuronal populations by temporally deconvolved Ca2+ imaging , 2006, Nature Methods.

[53]  G. Laurent,et al.  Transient Dynamics versus Fixed Points in Odor Representations by Locust Antennal Lobe Projection Neurons , 2005, Neuron.

[54]  M. Yokoi,et al.  Transgenic expression of Cre recombinase in mitral/tufted cells of the olfactory bulb , 2005, Genesis.

[55]  Andreas T. Schaefer,et al.  Maintaining Accuracy at the Expense of Speed Stimulus Similarity Defines Odor Discrimination Time in Mice , 2004, Neuron.

[56]  G. Laurent,et al.  Multiplexing using synchrony in the zebrafish olfactory bulb , 2004, Nature Neuroscience.

[57]  Yoshihiro Yoshihara,et al.  Mitral and tufted cells differ in the decoding manner of odor maps in the rat olfactory bulb. , 2004, Journal of neurophysiology.

[58]  V. Jayaraman,et al.  Intensity versus Identity Coding in an Olfactory System , 2003, Neuron.

[59]  Donald A. Wilson,et al.  Experience Modifies Olfactory Acuity: Acetylcholine-Dependent Learning Decreases Behavioral Generalization between Similar Odorants , 2002, The Journal of Neuroscience.

[60]  M. Hasselmo,et al.  Selective loss of cholinergic neurons projecting to the olfactory system increases perceptual generalization between similar, but not dissimilar, odorants. , 2001, Behavioral neuroscience.

[61]  G. Laurent,et al.  Dynamic optimization of odor representations by slow temporal patterning of mitral cell activity. , 2001, Science.

[62]  J. Bockaert,et al.  Differential modulation of the 5-HT4 receptor agonists and antagonist on rat learning and memory , 2000, Neuropharmacology.

[63]  K. Mori,et al.  The olfactory bulb: coding and processing of odor molecule information. , 1999, Science.

[64]  G. Shepherd,et al.  Olfactory bulb , 1998 .

[65]  E Orona,et al.  Dendritic and axonal organization of mitral and tufted cells in the rat olfactory bulb , 1984, The Journal of comparative neurology.

[66]  K Kishi,et al.  Distribution of dendrites of mitral, displaced mitral, tufted, and granule cells in the rabbit olfactory bulb , 1983, The Journal of comparative neurology.

[67]  E Orona,et al.  Different granule cell populations innervate superficial and deep regions of the external plexiform layer in rat olfactory bulb , 1983, The Journal of comparative neurology.

[68]  K. Svoboda,et al.  Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window , 2009, Nature Protocols.

[69]  米倉 淳一郎 Conditional genetic labeling of mitral cells of the mouse accessory olfactory bulb to visualize the organization of their apical dendritic tufts , 2008 .

[70]  P. Sterling The Synaptic Organization of the Brain , 1998 .

[71]  G. Shepherd The Synaptic Organization of the Brain , 1979 .

[72]  Wei R. Chen,et al.  Differential Axonal Projection of Mitral and Tufted Cells in the Mouse Main Olfactory System , 2010, Front. Neural Circuits.