Antibody drug conjugates: Progress, pitfalls, and promises.

Antibody drug conjugates (ADCs) represent a promising and an efficient strategy for targeted cancer therapy. Comprised of a monoclonal antibody, a cytotoxic drug, and a linker, ADCs offer tumor selectively, reduced toxicity, and improved stability in systemic circulation. Recent approvals of two ADCs have led to a resurgence in ADC research, with more than 60 ADCs under various stages of clinical development. The therapeutic success of future ADCs is dependent on adherence to key requirements of their design and careful selection of the target antigen on cancer cells. Here we review the main components in the design of antibody drug conjugates, improvements made, and lessons learned over two decades of research, as well as the future of third generation ADCs.

[1]  R. Advani,et al.  Interim results of brentuximab vedotin in combination with nivolumab in patients with relapsed or refractory Hodgkin lymphoma. , 2018, Blood.

[2]  M. Dorywalska,et al.  RN927C, a Site-Specific Trop-2 Antibody–Drug Conjugate (ADC) with Enhanced Stability, Is Highly Efficacious in Preclinical Solid Tumor Models , 2016, Molecular Cancer Therapeutics.

[3]  Nikolaos Diamantis,et al.  Antibody-drug conjugates—an emerging class of cancer treatment , 2016, British Journal of Cancer.

[4]  P. S. Andersen,et al.  Novel antibody–antibiotic conjugate eliminates intracellular S. aureus , 2015, Nature.

[5]  Kathryn Loving,et al.  Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells to Result in Sustained Tumor Regressions , 2015, Clinical Cancer Research.

[6]  A. Stopeck,et al.  EMERGE: A Randomized Phase II Study of the Antibody-Drug Conjugate Glembatumumab Vedotin in Advanced Glycoprotein NMB-Expressing Breast Cancer. , 2015, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[7]  T. Chittenden,et al.  IMGN853, a Folate Receptor-α (FRα)–Targeting Antibody–Drug Conjugate, Exhibits Potent Targeted Antitumor Activity against FRα-Expressing Tumors , 2015, Molecular Cancer Therapeutics.

[8]  Yu Cao,et al.  An immunosuppressive antibody-drug conjugate. , 2015, Journal of the American Chemical Society.

[9]  P. Parren,et al.  High Turnover of Tissue Factor Enables Efficient Intracellular Delivery of Antibody–Drug Conjugates , 2015, Molecular Cancer Therapeutics.

[10]  R. Ubink,et al.  The Preclinical Profile of the Duocarmycin-Based HER2-Targeting ADC SYD985 Predicts for Clinical Benefit in Low HER2-Expressing Breast Cancers , 2015, Molecular Cancer Therapeutics.

[11]  C. García-echeverría,et al.  Antibody-drug conjugates—a new wave of cancer drugs. , 2014, Bioorganic & medicinal chemistry letters.

[12]  N. Hanna,et al.  Testicular cancer--discoveries and updates. , 2014, The New England journal of medicine.

[13]  D. Neri,et al.  A Chemically Defined Trifunctional Antibody–Cytokine–Drug Conjugate with Potent Antitumor Activity , 2014, Molecular Cancer Therapeutics.

[14]  G. V. van Dongen,et al.  Development of novel ADCs: conjugation of tubulysin analogues to trastuzumab monitored by dual radiolabeling. , 2014, Cancer research.

[15]  R. Chari,et al.  Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. , 2014, Journal of medicinal chemistry.

[16]  D. Neri,et al.  Antibody-Based Delivery of IL2 and Cytotoxics Eradicates Tumors in Immunocompetent Mice , 2014, Molecular Cancer Therapeutics.

[17]  R. Chari,et al.  Antibody-drug conjugates: an emerging concept in cancer therapy. , 2014, Angewandte Chemie.

[18]  E. Fischer,et al.  Transglutaminase-based chemo-enzymatic conjugation approach yields homogeneous antibody-drug conjugates. , 2014, Bioconjugate chemistry.

[19]  Peter G Schultz,et al.  A general approach to site-specific antibody drug conjugates , 2014, Proceedings of the National Academy of Sciences.

[20]  J. Reichert,et al.  Antibody-drug conjugates , 2013, mAbs.

[21]  Alain Beck,et al.  Antibody-drug conjugate model fast characterization by LC-MS following IdeS proteolytic digestion , 2013, mAbs.

[22]  Bin Liu,et al.  Methods for site-specific drug conjugation to antibodies , 2013, mAbs.

[23]  R. Schibli,et al.  Prospects in Folate Receptor-Targeted Radionuclide Therapy , 2013, Front. Oncol..

[24]  P. Burke,et al.  A potent anti-CD70 antibody-drug conjugate combining a dimeric pyrrolobenzodiazepine drug with site-specific conjugation technology. , 2013, Bioconjugate chemistry.

[25]  J. Laurence,et al.  Conjugation site heterogeneity causes variable electrostatic properties in Fc conjugates. , 2013, Bioconjugate chemistry.

[26]  Asher Mullard Maturing antibody–drug conjugate pipeline hits 30 , 2013, Nature Reviews Drug Discovery.

[27]  R. Abraham,et al.  The antibody-drug conjugate: an enabling modality for natural product-based cancer therapeutics. , 2013, Natural product reports.

[28]  A. Verma,et al.  Linked-In: Design and Efficacy of Antibody Drug Conjugates in Oncology , 2013, Oncotarget.

[29]  B. Nolting Linker technologies for antibody-drug conjugates. , 2013, Methods in molecular biology.

[30]  Laurent Ducry,et al.  Antibody-Drug Conjugates , 2013, Methods in Molecular Biology.

[31]  Nathalie Vigneron,et al.  Database of T cell-defined human tumor antigens: the 2013 update. , 2013, Cancer immunity.

[32]  Uma Yasothan,et al.  Brentuximab vedotin , 2012, Nature Reviews Drug Discovery.

[33]  S. Inoue,et al.  Cellular Delivery of Doxorubicin via pH-Controlled Hydrazone Linkage Using Multifunctional Nano Vehicle Based on Poly(β-L-Malic Acid) , 2012, International journal of molecular sciences.

[34]  P. Senter,et al.  The discovery and development of brentuximab vedotin for use in relapsed Hodgkin lymphoma and systemic anaplastic large cell lymphoma , 2012, Nature Biotechnology.

[35]  M. Sliwkowski,et al.  Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates , 2012, Nature Biotechnology.

[36]  P. Senter,et al.  Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine residues. , 2012, Methods in enzymology.

[37]  F. Dosio,et al.  Immunotoxins and Anticancer Drug Conjugate Assemblies: The Role of the Linkage between Components , 2011, Toxins.

[38]  G. Adams,et al.  Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. , 2011, Cancer research.

[39]  D. Hanahan,et al.  Hallmarks of Cancer: The Next Generation , 2011, Cell.

[40]  Christian Bailly,et al.  The next generation of antibody-drug conjugates comes of age. , 2010, Discovery medicine.

[41]  Stephen C Alley,et al.  Antibody-drug conjugates: targeted drug delivery for cancer. , 2010, Current opinion in chemical biology.

[42]  D. Benjamin,et al.  Intracellular Activation of SGN-35, a Potent Anti-CD30 Antibody-Drug Conjugate , 2010, Clinical Cancer Research.

[43]  Rajeeva Singh,et al.  Tumor delivery and in vivo processing of disulfide-linked and thioether-linked antibody-maytansinoid conjugates. , 2010, Bioconjugate chemistry.

[44]  P. Senter Potent antibody drug conjugates for cancer therapy. , 2009, Current opinion in chemical biology.

[45]  G. Frantz,et al.  Antibody-drug conjugates for the treatment of non-Hodgkin's lymphoma: target and linker-drug selection. , 2009, Cancer research.

[46]  Ji Luo,et al.  Principles of Cancer Therapy: Oncogene and Non-oncogene Addiction , 2009, Cell.

[47]  John M Lambert,et al.  Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. , 2008, Cancer research.

[48]  Edward Chu,et al.  A history of cancer chemotherapy. , 2008, Cancer research.

[49]  P. Vrignaud,et al.  525 POSTER Preclinical evaluation of SAR566658 (huDS6-DM4) in mice bearing human tumor xenografts of breast, ovarian, lung, cervical and pancreatic cancer , 2008 .

[50]  Paul Polakis,et al.  Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index , 2008, Nature Biotechnology.

[51]  P. Carter,et al.  Antibody-Drug Conjugates for Cancer Therapy , 2008, Cancer journal.

[52]  P. Senter,et al.  Novel peptide linkers for highly potent antibody-auristatin conjugate. , 2008, Bioconjugate chemistry.

[53]  A. Rosenberg,et al.  Effects of protein aggregates: An immunologic perspective , 2006, The AAPS Journal.

[54]  V. Goldmacher,et al.  Cell killing by antibody-drug conjugates. , 2007, Cancer letters.

[55]  Alexander Staab,et al.  A Phase I Dose Escalation Study with Anti-CD44v6 Bivatuzumab Mertansine in Patients with Incurable Squamous Cell Carcinoma of the Head and Neck or Esophagus , 2006, Clinical Cancer Research.

[56]  A. Anichini,et al.  Unique Tumor Antigens: Evidence for Immune Control of Genome Integrity and Immunogenic Targets for T Cell–Mediated Patient-Specific Immunotherapy , 2006, Clinical Cancer Research.

[57]  R. Lutz,et al.  Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. , 2006, Cancer research.

[58]  M. McNiven,et al.  A novel endocytic mechanism of epidermal growth factor receptor sequestration and internalization. , 2006, Cancer research.

[59]  T. Chittenden,et al.  Antibody-drug conjugates designed to eradicate tumors with homogeneous and heterogeneous expression of the target antigen. , 2006, Cancer research.

[60]  I. Ojima,et al.  Recent advances in tumor-targeting anticancer drug conjugates. , 2005, Bioorganic & medicinal chemistry.

[61]  A. Wahl,et al.  In vivo drug-linker stability of an anti-CD30 dipeptide-linked auristatin immunoconjugate. , 2005, Clinical cancer research : an official journal of the American Association for Cancer Research.

[62]  G. Balendiran,et al.  The role of glutathione in cancer , 2004, Cell biochemistry and function.

[63]  A. Rajasekaran,et al.  Biological impediments to monoclonal antibody-based cancer immunotherapy. , 2004, Molecular cancer therapeutics.

[64]  Damon L. Meyer,et al.  Effects of Drug Loading on the Antitumor Activity of a Monoclonal Antibody Drug Conjugate , 2004, Clinical Cancer Research.

[65]  J. Murray,et al.  Phase I trial of the anti-Lewis Y drug immunoconjugate BR96-doxorubicin in patients with lewis Y-expressing epithelial tumors. , 2000, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[66]  J. Ajani,et al.  A multi-institutional phase II study of BMS-182248-01 (BR96-doxorubicin conjugate) administered every 21 days in patients with advanced gastric adenocarcinoma. , 2000, Cancer journal.

[67]  Bonnie F. Sloane,et al.  Unraveling the role of proteases in cancer. , 2000, Clinica chimica acta; international journal of clinical chemistry.

[68]  K. Gelmon,et al.  Randomized phase II study of BR96-doxorubicin conjugate in patients with metastatic breast cancer. , 1999, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[69]  R. Gralla,et al.  Vinorelbine (Navelbine) in the treatment of non-small-cell lung cancer: studies with single-agent therapy and in combination with cisplatin. , 1999, Annals of oncology : official journal of the European Society for Medical Oncology.

[70]  D. Budman Vinorelbine (Navelbine): a third-generation vinca alkaloid. , 1997, Cancer investigation.

[71]  R. Donehower,et al.  Drug therapy : paclitaxel (Taxol) , 1995 .

[72]  E K Rowinsky,et al.  Paclitaxel (taxol) , 1995, The New England journal of medicine.

[73]  J. Robb,et al.  Monoclonal antibody KS1/4-methotrexate immunoconjugate studies in non-small cell lung carcinoma. , 1994, American journal of respiratory and critical care medicine.

[74]  P. Trail,et al.  Cure of xenografted human carcinomas by BR96-doxorubicin immunoconjugates. , 1993, Science.

[75]  P. Pacini,et al.  Doxorubicin and epirubicin cardiotoxicity: experimental and clinical aspects. , 1989, International journal of clinical pharmacology, therapy, and toxicology.

[76]  M. Arlen Tumor antigens. , 1981, The New England journal of medicine.

[77]  M. O’connell,et al.  Phase II trial of maytansine in patients with advanced colorectal carcinoma. , 1978, Cancer treatment reports.

[78]  V. Devita The evolution of therapeutic research in cancer. , 1978, The New England journal of medicine.