Heat Kernel Generated Frames in the Setting of Dirichlet Spaces

Wavelet bases and frames consisting of band limited functions of nearly exponential localization on ℝd are a powerful tool in harmonic analysis by making various spaces of functions and distributions more accessible for study and utilization, and providing sparse representation of natural function spaces (e.g. Besov spaces) on ℝd. Such frames are also available on the sphere and in more general homogeneous spaces, on the interval and ball. The purpose of this article is to develop band limited well-localized frames in the general setting of Dirichlet spaces with doubling measure and a local scale-invariant Poincaré inequality which lead to heat kernels with small time Gaussian bounds and Hölder continuity. As an application of this construction, band limited frames are developed in the context of Lie groups or homogeneous spaces with polynomial volume growth, complete Riemannian manifolds with Ricci curvature bounded from below and satisfying the volume doubling property, and other settings. The new frames are used for decomposition of Besov spaces in this general setting.

[1]  G. Szegő Zeros of orthogonal polynomials , 1939 .

[2]  Karl-Theodor Sturm,et al.  Analysis on local Dirichlet spaces. III. The parabolic Harnack inequality , 1996 .

[3]  A Harnack inequality for solutions of difference differential equations of elliptic-parabolic type , 1993 .

[4]  Ronald R. Coifman,et al.  Analyse harmonique non-commutative sur certains espaces homogènes : étude de certaines intégrales singulières , 1971 .

[5]  Jacobi decomposition of weighted Triebel–Lizorkin and Besov spaces , 2006, math/0610624.

[6]  Hahn-Banach type theorems for hypolinear functionals on preordered topological vector spaces. , 1974 .

[7]  P. Petrushev,et al.  Decomposition of Triebel-Lizorkin and Besov spaces in the context of Laguerre expansions , 2008, 0804.4648.

[8]  E. Ouhabaz Analysis of Heat Equations on Domains. (LMS-31) , 2009 .

[9]  L. Saloff-Coste,et al.  On the relation between elliptic and parabolic Harnack inequalities , 2001 .

[10]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[11]  E. Davies,et al.  Heat kernels and spectral theory , 1989 .

[12]  Pencho Petrushev,et al.  Needlet algorithms for estimation in inverse problems , 2007, 0705.0274.

[13]  L. Saloff-Coste,et al.  Neumann and Dirichlet Heat Kernels in Inner Uniform Domains , 2011, Astérisque.

[14]  G. Weiss,et al.  Extensions of Hardy spaces and their use in analysis , 1977 .

[15]  Yuan Xu,et al.  Decomposition of weighted Triebel-Lizorkin and Besov spaces on the ball , 2007 .

[16]  U. Mosco,et al.  Sobolev inequalities on homogeneous spaces , 1995 .

[17]  U. Mosco,et al.  A Saint-Venant type principle for Dirichlet forms on discontinuous media , 1995 .

[18]  Laurent Saloff-Coste,et al.  Aspects of Sobolev-type inequalities , 2001 .

[19]  Yuan Xu,et al.  Sub-exponentially localized kernels and frames induced by orthogonal expansions , 2008, 0809.3421.

[20]  H. Triebel Interpolation Theory, Function Spaces, Differential Operators , 1978 .

[21]  Pencho Petrushev,et al.  Decomposition of Besov and Triebel–Lizorkin spaces on the sphere , 2006 .

[22]  S. Yau,et al.  On the parabolic kernel of the Schrödinger operator , 1986 .

[23]  George G. Lorentz,et al.  Constructive Approximation , 1993, Grundlehren der mathematischen Wissenschaften.

[24]  Nicolas Victoir,et al.  Analysis on local Dirichlet spaces , 2010 .

[25]  G. Weiss,et al.  Littlewood-Paley Theory and the Study of Function Spaces , 1991 .

[26]  E. Ouhabaz Analysis of Heat Equations on Domains , 2004 .

[27]  L. Saloff-Coste,et al.  A note on Poincaré, Sobolev, and Harnack inequalities , 1992 .

[28]  Yuan Xu,et al.  Localized Polynomial Frames on the Ball , 2006 .

[29]  Ronald R. Coifman,et al.  Analyse Hamonique Non-Commutative sur Certains Espaces Homogenes , 1971 .

[30]  J. Peetre New thoughts on Besov spaces , 1976 .

[31]  D. Geller,et al.  Band-Limited Localized Parseval Frames and Besov Spaces on Compact Homogeneous Manifolds , 2010, 1002.3841.

[32]  J. Cooper,et al.  SEMI‐GROUPS OF OPERATORS AND APPROXIMATION , 1969 .

[33]  A. Grigor’yan Heat Kernel and Analysis on Manifolds , 2012 .

[34]  H. Triebel Theory Of Function Spaces , 1983 .

[35]  F. Smithies Linear Operators , 2019, Nature.

[36]  P. Petrushev,et al.  Inversion of noisy Radon transform by SVD based needlets , 2008, 0809.3332.

[37]  Kellen Petersen August Real Analysis , 2009 .

[38]  M. Röckner General theory of Dirichlet forms and applications , 1993 .

[39]  D. W. Stroock,et al.  Opérateurs uniformément sous-elliptiques sur les groupes de Lie , 1991 .

[40]  Gerald B. Folland,et al.  Real Analysis: Modern Techniques and Their Applications , 1984 .

[41]  G. Carron,et al.  Gaussian estimates and Lp-boundedness of Riesz means , 2002 .

[42]  Jöran Bergh,et al.  General Properties of Interpolation Spaces , 1976 .

[43]  J. Moser On a pointwise estimate for parabolic differential equations , 1971 .

[44]  J. Nash Continuity of Solutions of Parabolic and Elliptic Equations , 1958 .

[45]  Karl-Theodor Sturm,et al.  Analysis on local Dirichlet spaces. I. Recurrence, conservativeness and Lp-Liouville properties. , 1994 .

[46]  V. A. Menegatto,et al.  Eigenvalues of Integral Operators Defined by Smooth Positive Definite Kernels , 2009 .

[47]  Adam S. Sikora,et al.  Gaussian heat kernel upper bounds via the Phragmén–Lindelöf theorem , 2006, math/0609429.

[48]  Parabolic Harnack inequality for divergence form second order differential operators , 1995 .

[49]  Yuan Xu,et al.  Localized Polynomial Frames on the Interval with Jacobi Weights , 2005 .

[50]  Nicholas T. Varopoulos,et al.  Analysis and Geometry on Groups , 1993 .

[51]  P. Lemarié,et al.  Base d'ondelettes sur les groupes de Lie stratifiés , 1989 .

[52]  Michael Frazier,et al.  Decomposition of Besov Spaces , 2009 .

[53]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[54]  Nicolas Bouleau,et al.  Dirichlet Forms and Analysis on Wiener Space , 1991 .

[55]  Yuan Xu,et al.  Decomposition of Spaces of Distributions Induced by Hermite Expansions , 2007, 0705.0318.

[56]  L. Saloff-Coste,et al.  Semi-groups of operators and function spaces on Lie groups , 1991 .

[57]  Lixin Yan,et al.  Calderón reproducing formulas and new Besov spaces associated with operators , 2012 .

[58]  Estimations du Noyau de la Chaleur sur les Espaces Homogènes , 1998 .

[59]  A. F. M. Ter Elst,et al.  Elliptic operators on Lie groups , 1995 .

[60]  Adam S. Sikora,et al.  Plancherel Type Estimates and Sharp Spectral Multipliers , 2002 .

[61]  Yuan Xu,et al.  Decomposition of spaces of distributions induced by tensor product bases , 2009, 0902.2601.

[62]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..