Phase equilibrium measurements of acoustically levitated squalane–CO2 mixtures by Raman spectroscopy

This work describes the phase equilibrium measurements of acoustically levitated binary mixtures with concentration measurements using Raman spectroscopy without sample extraction of the autoclave. The levitator design is implemented in a Single-Droplet Optical Cell for levitation processes under varying atmospheres. The advantages of acoustic levitation of small droplets under increased temperatures and pressure combined with spectroscopic applications like Raman spectroscopy enable novel experiments possibly relevant to the fields of chemical engineering. To the author's knowledge, this is the first use of Raman spectroscopy for phase equilibria investigations on acoustically levitated droplets under high pressure and temperature. The results show very good agreements with literature data. Copyright © 2014 John Wiley & Sons, Ltd.

[1]  S. T. Sie,et al.  High-Pressure Gas Chromatography and Chromatography with Supercritical Fluids. I. The Effect of Pressure on Partition Coefficients in Gas-Liquid Chromatography with Carbon Dioxide as a Carrier Gas , 1966 .

[2]  B. Schrader Infrared and Raman Spectroscopy , 1995 .

[3]  Josef Brandmüller,et al.  Einführung in die Ramanspektroskopie , 1962 .

[4]  T. Weigel,et al.  Raman spectroscopy on deformed droplets: theory and experiment , 2004 .

[5]  D. James,et al.  Angular overlap model description of the electronic and magnetic properties of copper(II) complexes , 1974 .

[6]  E. Weidner,et al.  Phasenverhalten (S-L-G) und Transporteigenschaften binärer Systeme aus hochviskosen Polyethylenglykolen und komprimiertem Kohlendioxid , 2004 .

[7]  Staffan Nilsson,et al.  Airborne chemistry: acoustic levitation in chemical analysis , 2004, Analytical and bioanalytical chemistry.

[8]  G. Schneider,et al.  Near-infrared spectroscopic investigations on phase behaviour and association of 1-octadecanol, 3-hexanol, and 3-methyl-3-pentanol in carbon dioxide and chlorotrifluoromethane , 1989 .

[9]  Karl Bücks,et al.  Über einige Beobachtungen an schwingenden Piezoquarzen und ihrem Schallfeld , 1933 .

[10]  G. Eckhardt,et al.  On the calculation of absolute Raman scattering cross sections from Raman scattering coefficients , 1966 .

[11]  G. Schneider,et al.  NIR—spectroscopic investigations on phase behaviour of low—volatile organic substances in supercritical carbon dioxide , 1985 .

[12]  A. Biswas Thermal Processing of o-Terphenyl: A Raman Study , 1993 .

[13]  D. Gerlich Molecular Ions and Nanoparticles in RF and AC Traps , 2003 .

[14]  Y. Zhou,et al.  Pressure dependence of vibrational Raman scattering of narrow-band, 248-nm, laser light by H2, N2, O2, CO2, CH4, C2H6, and C3H8 as high as 97 bar , 2000 .

[15]  Andreas Ostendorf,et al.  Analysis of the particle stability in a new designed ultrasonic levitation device. , 2011, The Review of scientific instruments.

[16]  A. Biswas Solidification of acoustically levitated o-terphenyl crystals: a Raman study , 1995 .

[17]  Michael V Berry,et al.  Of flying frogs and levitrons , 1997 .

[18]  R. W. Berg,et al.  High-Pressure Measuring Cell for Raman Spectroscopic Studies of Natural Gas , 2001 .

[19]  Vergleichende Betrachtungen zur berührungslosen Positionierung von Einzeltropfen in aerodynamischen, akustischen und elektrischen Kraftfeldern , 1995 .

[20]  S. Howdle,et al.  Simple cell for microscale capillary solution and supercritical fluid Raman spectroscopy , 1993 .

[21]  J. Michael Ramsey,et al.  Detection of single Rhodamine 6G molecules in levitated microdroplets , 1993 .

[22]  D. McNaughton,et al.  Chemical analysis of acoustically levitated drops by Raman spectroscopy , 2009, Analytical and bioanalytical chemistry.