Controversial issues in visual cortex mapping: Extrastriate cortex between areas V2 and MT in human and nonhuman primates

The visual cerebral cortex of primates includes a mosaic of anatomically and functionally distinct areas processing visual information. While there is universal agreement about the location, boundaries, and topographic organization of the areas at the earliest stages of visual processing in many primate species, i.e., the primary (V1), secondary (V2), and middle temporal (MT) visual areas, there is still ongoing debate regarding the exact parcellation of cortex located between areas V2 and MT. Several parcellation schemes have been proposed for extrastriate cortex even within the same species. With the exception of V1, V2, and MT, these schemes differ in areal borders, areal location, neighboring relations, number of areas, and nomenclature. As a result, most anatomical and physiological studies of these areas have been carried out following one or another scheme, in the absence of any general agreement. This situation is inevitably hampering our understanding of the function and evolution of these visual areas. The goal of this special issue is to provide a critical review and evaluation of the literature on the most controversial issues regarding the parcellation of extrastriate cortex, to identify the main reasons for the controversy, and to suggest critical future experimental approaches that could lead to a consensus about the anatomical and functional identity of these areas.

[1]  Andreas Bartels,et al.  Human Areas V3A and V6 Compensate for Self-Induced Planar Visual Motion , 2012, Neuron.

[2]  D. Melcher,et al.  The Role of Attentional Priority and Saliency in Determining Capacity Limits in Enumeration and Visual Working Memory , 2011, PloS one.

[3]  D. Ts'o,et al.  Functional organization of primate visual cortex revealed by high resolution optical imaging. , 1990, Science.

[4]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[5]  S Zeki,et al.  Improbable areas in the visual brain , 2003, Trends in Neurosciences.

[6]  J. Allman,et al.  The dorsomedial cortical visual area: A third tier area in the occipital lobe of the owl monkey (aotus trivirgatus) , 1975, Brain Research.

[7]  Haluk Öğmen,et al.  Non-retinotopic feature processing in the absence of retinotopic spatial layout and the construction of perceptual space from motion , 2012, Vision Research.

[8]  L. Matin,et al.  Visual Perception of Direction for Stimuli Flashed During Voluntary Saccadic Eye Movements , 1965, Science.

[9]  R Gattass,et al.  Cortical afferents of visual area MT in the Cebus monkey: Possible homologies between New and old World monkeys , 1993, Visual Neuroscience.

[10]  D. Mackay Visual stability. , 1972, Investigative ophthalmology.

[11]  Essa Yacoub,et al.  High-field fMRI unveils orientation columns in humans , 2008, Proceedings of the National Academy of Sciences.

[12]  J. Gottlieb From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition , 2007, Neuron.

[13]  Wu Li,et al.  Perceptual learning beyond retinotopic reference frame , 2010, Proceedings of the National Academy of Sciences.

[14]  A Pooresmaeili,et al.  'Non-retinotopic processing' in Ternus motion displays modelled by spatiotemporal filters , 2010 .

[15]  V. Perry,et al.  The retinal ganglion cell distribution and the representation of the visual field in area 17 of the owl monkey, Aotus trivirgatus , 1993, Visual Neuroscience.

[16]  Justin L. Gardner,et al.  Demonstration of Tuning to Stimulus Orientation in the Human Visual Cortex: A High-Resolution fMRI Study with a Novel Continuous and Periodic Stimulation Paradigm , 2012, Cerebral cortex.

[17]  Sarah D. Vollmer,et al.  Object continuity and the transsaccadic representation of form , 2008, Perception & psychophysics.

[18]  R. Leahy,et al.  Mapping human brain function with MEG and EEG: methods and validation , 2004, NeuroImage.

[19]  D. Burr,et al.  Seeing objects in motion , 1986, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[20]  K. Grill-Spector,et al.  Relating retinotopic and object-selective responses in human lateral occipital cortex. , 2008, Journal of neurophysiology.

[21]  Caroline Van Eccelpoel,et al.  Coding of identity-diagnostic information in transsaccadic object perception. , 2008, Journal of vision.

[22]  Ravi S. Menon,et al.  Representation of Head-Centric Flow in the Human Motion Complex , 2006, The Journal of Neuroscience.

[23]  Russell A. Poldrack,et al.  What do differences between multi-voxel and univariate analysis mean? How subject-, voxel-, and trial-level variance impact fMRI analysis , 2014, NeuroImage.

[24]  J. Kaas,et al.  Cortical connections of area 18 and dorsolateral visual cortex in squirrel monkeys , 1988, Visual Neuroscience.

[25]  Karen F. LaRocque,et al.  Where is human V4? Predicting the location of hV4 and VO1 from cortical folding. , 2014, Cerebral cortex.

[26]  W T Newsome,et al.  Ventral posterior visual area of the macaque: Visual topography and areal boundaries , 1986, The Journal of comparative neurology.

[27]  Ian Nauhaus,et al.  Topography and Areal Organization of Mouse Visual Cortex , 2014, The Journal of Neuroscience.

[28]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[29]  A. Romer The vertebrate body , 1971 .

[30]  E. McKone,et al.  Global face distortion aftereffects tap face-specific and shape-generic processes. , 2012, Journal of vision.

[31]  Kae Nakamura,et al.  Updating of the visual representation in monkey striate and extrastriate cortex during saccades , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Kaas,et al.  Cortical integration of parallel pathways in the visual system of primates , 1989, Brain Research.

[33]  J. P. Jones,et al.  The two-dimensional spatial structure of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[34]  A. Morel,et al.  Connections of visual areas of the upper temporal lobe of owl monkeys: the MT crescent and dorsal and ventral subdivisions of FST , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[35]  R. Weller,et al.  Cortical connections of dorsal cortex rostral to V II in squirrel monkeys , 1991, The Journal of comparative neurology.

[36]  C L Colby,et al.  Visual, saccade-related, and cognitive activation of single neurons in monkey extrastriate area V3A. , 2000, Journal of neurophysiology.

[37]  J Douglas Crawford,et al.  Cortical mechanisms for trans-saccadic memory and integration of multiple object features , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[38]  W T Newsome,et al.  Interhemispheric connections of visual cortex in the owl monkey, Aotus trivirgatus, and the bushbaby, Galago senegalensis , 1980, The Journal of comparative neurology.

[39]  M. Sereno,et al.  A human parietal face area contains aligned head-centered visual and tactile maps , 2006, Nature Neuroscience.

[40]  J. Kaas,et al.  Interhemispheric connections of visual cortex of owl monkeys (Aotus trivirgatus), marmosets (Callithrix jacchus), and galagos (Galago crassicaudatus) , 1984, The Journal of comparative neurology.

[41]  Kenji Kawano,et al.  Neurons in cortical area MST remap the memory trace of visual motion across saccadic eye movements , 2014, Proceedings of the National Academy of Sciences.

[42]  Mechanisms behind Perisaccadic Increase of Perception , 2013, The Journal of Neuroscience.

[43]  Carol L Colby,et al.  Active Vision in Parietal and Extrastriate Cortex , 2005, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[44]  Simona Celebrini,et al.  Privileged Processing of the Straight-Ahead Direction in Primate Area V1 , 2010, Neuron.

[45]  Johan Wagemans,et al.  Perceptual Grouping of Object Contours Survives Saccades , 2011, PloS one.

[46]  Leslie G. Ungerleider,et al.  Cortical connections of visual area MT in the macaque , 1986, The Journal of comparative neurology.

[47]  B. Dosher,et al.  The role of attention in the programming of saccades , 1995, Vision Research.

[48]  T. Vilis,et al.  Gaze-Centered Updating of Visual Space in Human Parietal Cortex , 2003, The Journal of Neuroscience.

[49]  R E Weller,et al.  Cortical connections of the middle temporal visual area (MT) and the superior temporal cortex in owl monkeys , 1984, The Journal of comparative neurology.

[50]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V4 , 2012, Neuron.

[51]  Paul M. Corballis,et al.  Human transsaccadic visual processing: Presaccadic remapping and postsaccadic updating , 2010, Neuropsychologia.

[52]  F. Gallyas Silver staining of myelin by means of physical development. , 1979, Neurological research.

[53]  A. Grinvald,et al.  Spatial Relationships among Three Columnar Systems in Cat Area 17 , 1997, The Journal of Neuroscience.

[54]  S. Zeki,et al.  The Organization of Connections between Areas V5 and V2 in Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[55]  Nicholas A. Steinmetz,et al.  Visual Space is Compressed in Prefrontal Cortex Before Eye Movements , 2014, Nature.

[56]  Peter Lakatos,et al.  Dynamics of Active Sensing and perceptual selection , 2010, Current Opinion in Neurobiology.

[57]  C. Genovese,et al.  Spatial Updating in Human Parietal Cortex , 2003, Neuron.

[58]  J. Pettigrew,et al.  Organization of the second visual area in the megachiropteran bat Pteropus. , 1994, Cerebral cortex.

[59]  R. Desimone,et al.  Local precision of visuotopic organization in the middle temporal area (MT) of the macaque , 2004, Experimental Brain Research.

[60]  S. Sherman The thalamus is more than just a relay , 2007, Current Opinion in Neurobiology.

[61]  D Purves,et al.  Specialized vascularization of the primate visual cortex , 1991, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[62]  M. Goldberg,et al.  Spatial processing in the monkey frontal eye field. I. Predictive visual responses. , 1997, Journal of neurophysiology.

[63]  H. Egeth,et al.  Are attentional dwell times inconsistent with serial visual search? , 1996, Psychonomic bulletin & review.

[64]  David C. Burr,et al.  Spatiotopic Coding of BOLD Signal in Human Visual Cortex Depends on Spatial Attention , 2011, PloS one.

[65]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[66]  J. T. Weber,et al.  Interhemispheric connections in the visual cortex of the squirrel monkey (Saimiri sciureus) , 1987, The Journal of comparative neurology.

[67]  Alessio Fracasso,et al.  Remapping of the line motion illusion across eye movements , 2012, Experimental Brain Research.

[68]  J. Kaas,et al.  Connectional Evidence for Dorsal and Ventral V3, and Other Extrastriate Areas in the Prosimian Primate, Galago garnetti , 2002, Brain, Behavior and Evolution.

[69]  M. Sereno,et al.  Mapping of Contralateral Space in Retinotopic Coordinates by a Parietal Cortical Area in Humans , 2001, Science.

[70]  Sterling C. Johnson,et al.  A generalized form of context-dependent psychophysiological interactions (gPPI): A comparison to standard approaches , 2012, NeuroImage.

[71]  Haluk Öğmen,et al.  Perceptual Learning in a Nonretinotopic Frame of Reference , 2010, Psychological science.

[72]  Thomas U. Otto,et al.  Feature integration across space, time, and orientation. , 2009, Journal of experimental psychology. Human perception and performance.

[73]  Hans-Jochen Heinze,et al.  The appearance of figures seen through a narrow aperture under free viewing conditions: effects of spontaneous eye motions. , 2007, Journal of vision.

[74]  G. Fink,et al.  Spatiotopic representations emerge from remapped activity in early visual areas , 2014 .

[75]  K. Uğurbil,et al.  Layer-Specific fMRI Reflects Different Neuronal Computations at Different Depths in Human V1 , 2012, PloS one.

[76]  Avishai Henik,et al.  Parietal Lobe Lesions Disrupt Saccadic Remapping of Inhibitory Location Tagging , 2004, Journal of Cognitive Neuroscience.

[77]  P. P. Battaglini,et al.  Parietal neurons encoding spatial locations in craniotopic coordinates , 2004, Experimental Brain Research.

[78]  C. Galletti,et al.  Eye Position Influence on the Parieto‐occipital Area PO (V6) of the Macaque Monkey , 1995, The European journal of neuroscience.

[79]  H. Berg,et al.  Supporting Online Material Materials and Methods Som Text Figs. S1 to S7 Tables S1 to S3 References Movies S1 to S6 Tuned Responses of Astrocytes and Their Influence on Hemodynamic Signals in the Visual Cortex , 2022 .

[80]  Sheng He,et al.  Seeing the invisible: The scope and limits of unconscious processing in binocular rivalry , 2008, Progress in Neurobiology.

[81]  Terrence J. Sejnowski,et al.  Egocentric Spatial Representation in Early Vision , 1993 .

[82]  David C. Burr,et al.  Compression of visual space before saccades , 1997, Nature.

[83]  C. Colby,et al.  Trans-saccadic perception , 2008, Trends in Cognitive Sciences.

[84]  Ehud Zohary,et al.  Multiple Reference Frames for Saccadic Planning in the Human Parietal Cortex , 2011, The Journal of Neuroscience.

[85]  Keiji Tanaka,et al.  Human Ocular Dominance Columns as Revealed by High-Field Functional Magnetic Resonance Imaging , 2001, Neuron.

[86]  Aline Bompas,et al.  Evidence for a Role of Action in Colour Perception , 2006, Perception.

[87]  H. Deubel,et al.  Saccade target selection and object recognition: Evidence for a common attentional mechanism , 1996, Vision Research.

[88]  R. Tootell,et al.  Where is 'dorsal V4' in human visual cortex? Retinotopic, topographic and functional evidence. , 2001, Cerebral cortex.

[89]  Bart Krekelberg,et al.  Postsaccadic visual references generate presaccadic compression of space , 2000, Nature.

[90]  D. Melcher Spatiotopic Transfer of Visual-Form Adaptation across Saccadic Eye Movements , 2005, Current Biology.

[91]  J. Hegdé,et al.  A Link between Visual Disambiguation and Visual Memory , 2010, The Journal of Neuroscience.

[92]  David Whitney,et al.  Motion-Dependent Representation of Space in Area MT+ , 2013, Neuron.

[93]  J. Crawford,et al.  Transsaccadic integration of visual features in a line intersection task , 2006, Experimental Brain Research.

[94]  M. Webster Adaptation and visual coding. , 2011, Journal of vision.

[95]  Maria Concetta Morrone,et al.  Spatiotopic neural representations develop slowly across saccades , 2013, Current Biology.

[96]  Johan Wagemans,et al.  Bistable Gestalts reduce activity in the whole of V1, not just the retinotopically predicted parts. , 2012, Journal of vision.

[97]  Matthew D. Hilchey,et al.  Oculomotor inhibition of return: How soon is it “recoded” into spatiotopic coordinates? , 2012, Attention, Perception, & Psychophysics.

[98]  P. Wenderoth,et al.  Retinotopic encoding of the direction aftereffect , 2008, Vision Research.

[99]  Nicholas V Swindale Elastic nets, travelling salesmen and cortical maps , 1992, Current Biology.

[100]  R Gattass,et al.  Visual area MT in the Cebus monkey: Location, visuotopic organization, and variability , 1989, The Journal of comparative neurology.

[101]  M. Sereno,et al.  From monkeys to humans: what do we now know about brain homologies? , 2005, Current Opinion in Neurobiology.

[102]  Patrick Cavanagh,et al.  The reference frame of the motion aftereffect is retinotopic. , 2009, Journal of vision.

[103]  N. Kanwisher,et al.  Feedback of pVisual Object Information to Foveal Retinotopic Cortex , 2008, Nature Neuroscience.

[104]  M. Gamberini,et al.  Resolving the organization of the New World monkey third visual complex: The dorsal extrastriate cortex of the marmoset (Callithrix jacchus) , 2005, The Journal of comparative neurology.

[105]  T. Takeuchi,et al.  Effect of light level on the reference frames of visual motion processing. , 2014, Journal of vision.

[106]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[107]  David Whitney,et al.  The Emergence of Perceived Position in the Visual System , 2011, Journal of Cognitive Neuroscience.

[108]  M Concetta Morrone,et al.  Neural mechanisms for timing visual events are spatially selective in real-world coordinates , 2007, Nature Neuroscience.

[109]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[110]  J. Kaas,et al.  Connectional and Architectonic Evidence for Dorsal and Ventral V3, and Dorsomedial Area in Marmoset Monkeys , 2001, The Journal of Neuroscience.

[111]  David J. Field,et al.  What is the other 85% of V1 doing? , 2004 .

[112]  Karl J. Friston,et al.  Psychophysiological and Modulatory Interactions in Neuroimaging , 1997, NeuroImage.

[113]  Ehud Zohary,et al.  Motion adaptation reveals that the motion vector is represented in multiple coordinate frames. , 2012, Journal of vision.

[114]  Wim Vanduffel,et al.  The Retinotopic Organization of Macaque Occipitotemporal Cortex Anterior to V4 and Caudoventral to the Middle Temporal (MT) Cluster , 2014, The Journal of Neuroscience.

[115]  R B Tootell,et al.  Topography of cytochrome oxidase activity in owl monkey cortex , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[116]  D. Melcher Predictive remapping of visual features precedes saccadic eye movements , 2007, Nature Neuroscience.

[117]  C. Iadecola,et al.  Glial regulation of the cerebral microvasculature , 2007, Nature Neuroscience.

[118]  R E Weller,et al.  Cortical connections of the caudal subdivision of the dorsolateral area (V4) in monkeys , 1991, The Journal of comparative neurology.

[119]  K. Hoffmann,et al.  Eye position effects in monkey cortex. I. Visual and pursuit-related activity in extrastriate areas MT and MST. , 1997, Journal of neurophysiology.

[120]  Roberto Arrighi,et al.  Spatiotopic selectivity of adaptation-based compression of event duration. , 2011, Journal of vision.

[121]  Eero P. Simoncelli,et al.  A functional and perceptual signature of the second visual area in primates , 2013, Nature Neuroscience.

[122]  J R Duhamel,et al.  The updating of the representation of visual space in parietal cortex by intended eye movements. , 1992, Science.

[123]  D. J. Felleman,et al.  Receptive field properties of neurons in area V3 of macaque monkey extrastriate cortex. , 1987, Journal of neurophysiology.

[124]  Maria Concetta Morrone,et al.  Nonretinotopic visual processing in the brain , 2015, Visual Neuroscience.

[125]  D. Attwell,et al.  Capillary pericytes regulate cerebral blood flow in health and disease , 2014, Nature.

[126]  V. Mountcastle The columnar organization of the neocortex. , 1997, Brain : a journal of neurology.

[127]  R Gattass,et al.  Representation of the visual field in the second visual area in the Cebus monkey , 1988, The Journal of comparative neurology.

[128]  Kimron Shapiro,et al.  Direct measurement of attentional dwell time in human vision , 1994, Nature.

[129]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[130]  Markus Lappe,et al.  Anticipatory Saccade Target Processing and the Presaccadic Transfer of Visual Features , 2011, The Journal of Neuroscience.

[131]  Julie D. Golomb,et al.  The Native Coordinate System of Spatial Attention Is Retinotopic , 2008, The Journal of Neuroscience.

[132]  M. Hayhoe,et al.  Integration of Form across Saccadic Eye Movements , 1991, Perception.

[133]  Richard A. Andersen,et al.  A back-propagation programmed network that simulates response properties of a subset of posterior parietal neurons , 1988, Nature.

[134]  D. J. Felleman,et al.  Anatomical and physiological asymmetries related to visual areas V3 and VP in macaque extrastriate cortex , 1986, Vision Research.

[135]  M G Rosa,et al.  Visual areas in the dorsal and medial extrastriate cortices of the marmoset , 1995, The Journal of comparative neurology.

[136]  Bevil R. Conway,et al.  Toward a Unified Theory of Visual Area V 4 , 2012 .

[137]  Christopher J. Aura,et al.  Divergence of fMRI and neural signals in V1 during perceptual suppression in the awake monkey , 2008, Nature Neuroscience.

[138]  C. Gross,et al.  Visuotopic organization and extent of V3 and V4 of the macaque , 1988, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[139]  David Melcher,et al.  Spatiotopic temporal integration of visual motion across saccadic eye movements , 2003, Nature Neuroscience.

[140]  G. Alvarez Representing multiple objects as an ensemble enhances visual cognition , 2011, Trends in Cognitive Sciences.

[141]  David Melcher,et al.  Characterizing ensemble statistics: mean size is represented across multiple frames of reference , 2014, Attention, perception & psychophysics.

[142]  Robert Desimone,et al.  Cortical connections of area V4 in the macaque. , 2000, Cerebral cortex.

[143]  David E. Irwin Information integration across saccadic eye movements , 1991, Cognitive Psychology.

[144]  J. Kaas,et al.  Evidence for a Modified V3 with Dorsal and Ventral Halves in Macaque Monkeys , 2002, Neuron.

[145]  N. Barbaro,et al.  Effect of body tilt on receptive field orientation of simple visual cortical neurons in unanesthetized cats , 2004, Experimental Brain Research.

[146]  S. Nishida,et al.  Human Visual System Integrates Color Signals along a Motion Trajectory , 2007, Current Biology.

[147]  J. Kaas,et al.  Representation of the visual field on the medial wall of occipital-parietal cortex in the owl monkey. , 1976, Science.

[148]  Nikola T. Markov,et al.  Anatomy of hierarchy: Feedforward and feedback pathways in macaque visual cortex , 2013, The Journal of comparative neurology.

[149]  Jennifer F. Schumacher,et al.  High-resolution BOLD fMRI measurements of local orientation-dependent contextual modulation show a mismatch between predicted V1 output and local BOLD response , 2010, Vision Research.

[150]  M. Concetta Morrone,et al.  66 Interaction between Eye Movements and Vision: Perception during Saccades , 2013 .

[151]  F. Dick,et al.  Mapping the Human Cortical Surface by Combining Quantitative T1 with Retinotopy† , 2012, Cerebral cortex.

[152]  David Burr,et al.  Spatiotopic perceptual maps in humans: evidence from motion adaptation , 2012, Proceedings of the Royal Society B: Biological Sciences.

[153]  Eckart Zimmermann,et al.  Buildup of spatial information over time and across eye-movements , 2014, Behavioural Brain Research.

[154]  Essa Yacoub,et al.  Robust detection of ocular dominance columns in humans using Hahn Spin Echo BOLD functional MRI at 7 Tesla , 2007, NeuroImage.

[155]  Edward M. Callaway,et al.  Feedforward, feedback and inhibitory connections in primate visual cortex , 2004, Neural Networks.

[156]  Damien J. Mannion,et al.  Consequences of polar form coherence for fMRI responses in human visual cortex , 2013, NeuroImage.

[157]  C. Genovese,et al.  Remapping in human visual cortex. , 2007, Journal of neurophysiology.

[158]  John Ross,et al.  Visual processing of motion , 1986, Trends in Neurosciences.

[159]  Shimon Ullman,et al.  Image interpretation by a single bottom-up top-down cycle , 2008, Proceedings of the National Academy of Sciences.

[160]  G. Elston,et al.  Visuotopic organisation and neuronal response selectivity for direction of motion in visual areas of the caudal temporal lobe of the marmoset monkey (Callithrix jacchus): Middle temporal area, middle temporal crescent, and surrounding cortex , 1998, The Journal of comparative neurology.

[161]  Michael P. Stryker,et al.  New Paradigm for Optical Imaging Temporally Encoded Maps of Intrinsic Signal , 2003, Neuron.

[162]  J. Bisley,et al.  Psychophysical evidence for spatiotopic processing in area MT in a short-term memory for motion task. , 2009, Journal of neurophysiology.

[163]  Leslie G. Ungerleider,et al.  Multiple visual areas in the caudal superior temporal sulcus of the macaque , 1986, The Journal of comparative neurology.

[164]  P. Saraiva,et al.  Relative sizes of cortical visual areas in marmosets: functional and phylogenetic implications , 2005, Experimental Brain Research.

[165]  David Melcher,et al.  A Shared, Flexible Neural Map Architecture Reflects Capacity Limits in Both Visual Short-Term Memory and Enumeration , 2014, The Journal of Neuroscience.

[166]  C. Galletti,et al.  ‘Real-motion’ cells in area V3A of macaque visual cortex , 2004, Experimental Brain Research.

[167]  Haluk Öğmen,et al.  Perceptual grouping induces non-retinotopic feature attribution in human vision , 2006, Vision Research.

[168]  P. Cavanagh,et al.  The gender-specific face aftereffect is based in retinotopic not spatiotopic coordinates across several natural image transformations. , 2009, Journal of vision.

[169]  G. Conroy Evolutionary history of the primates , 1980, International Journal of Primatology.

[170]  Sheng He,et al.  Automatic frame-centered object representation and integration revealed by iconic memory, visual priming, and backward masking. , 2012, Journal of vision.

[171]  A. Grinvald,et al.  The layout of iso-orientation domains in area 18 of cat visual cortex: optical imaging reveals a pinwheel-like organization , 1993, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[172]  M. Paolini,et al.  Direction selectivity in the middle lateral and lateral (ML and L) visual areas in the California ground squirrel. , 1998, Cerebral cortex.

[173]  Jan Theeuwes,et al.  A new estimation of the duration of attentional dwell time , 2004, Psychonomic bulletin & review.

[174]  Thomas U. Otto,et al.  Assessing the microstructure of motion correspondences with non-retinotopic feature attribution. , 2008, Journal of vision.

[175]  Kathryn J Jeffery,et al.  Navigating in a three-dimensional world. , 2013, The Behavioral and brain sciences.

[176]  Ehud Zohary,et al.  Beyond retinotopic mapping: the spatial representation of objects in the human lateral occipital complex. , 2007, Cerebral cortex.

[177]  J. Gibson Adaptation with negative after-effect. , 1937 .

[178]  J. Kaas,et al.  A representation of the visual field in the caudal third of the middle tempral gyrus of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[179]  J. Kaas,et al.  The relationship of corpus callosum connections to electrical stimulation maps of motor, supplementary motor, and the frontal eye fields in owl monkeys , 1986, The Journal of comparative neurology.

[180]  Justin L. Gardner,et al.  Modulation of Visual Responses by Gaze Direction in Human Visual Cortex , 2013, The Journal of Neuroscience.

[181]  Sang Chul Chong,et al.  The background is remapped across saccades , 2013, Experimental Brain Research.

[182]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[183]  Ruey-Song Huang,et al.  Bottom-up Retinotopic Organization Supports Top-down Mental Imagery , 2013, The open neuroimaging journal.

[184]  Jean Bullier,et al.  The Timing of Information Transfer in the Visual System , 1997 .

[185]  Walter H. F. Smith,et al.  Free software helps map and display data , 1991 .

[186]  L A Krubitzer,et al.  Cortical connections of MT in four species of primates: Areal, modular, and retinotopic patterns , 1990, Visual Neuroscience.

[187]  P. Lennie The Cost of Cortical Computation , 2003, Current Biology.

[188]  S. Petersen,et al.  Transient and sustained responses in four extrastriate visual areas of the owl monkey , 1988, Experimental Brain Research.

[189]  David Melcher,et al.  Backward Masking and Unmasking Across Saccadic Eye Movements , 2010, Current Biology.

[190]  Tatsuto Takeuchi,et al.  The reference frame of visual motion priming depends on underlying motion mechanisms. , 2014, Journal of vision.

[191]  Fei-Fei Li,et al.  Voxel-level functional connectivity using spatial regularization , 2012, NeuroImage.

[192]  Winrich A. Freiwald,et al.  Attention to objects made of features , 2007, Trends in Cognitive Sciences.

[193]  U. Ilg,et al.  Visual Stability and the Motion Aftereffect: A Psychophysical Study Revealing Spatial Updating , 2011, PloS one.

[194]  Tutis Vilis,et al.  Eye position signals modulate early dorsal and ventral visual areas. , 2002, Cerebral cortex.

[195]  Alfonso Caramazza,et al.  Continuous perception of motion and shape across saccadic eye movements. , 2010, Journal of vision.

[196]  M. Sereno Origin of symbol-using systems: speech, but not sign, without the semantic urge , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[197]  Marvin M Chun,et al.  Eye movements help link different views in scene-selective cortex. , 2011, Cerebral cortex.

[198]  Alexander G. Huth,et al.  Attention During Natural Vision Warps Semantic Representation Across the Human Brain , 2013, Nature Neuroscience.

[199]  Joseph Krummenacher,et al.  A (fascinating) litmus test for human retino- vs. non-retinotopic processing. , 2009, Journal of vision.

[200]  F. D. Lange,et al.  Shape Perception Simultaneously Up- and Downregulates Neural Activity in the Primary Visual Cortex , 2014, Current Biology.

[201]  N. Bischof,et al.  Untersuchungen und Überlegungen zur Richtungswahrnehmung bei willkürlichen sakkadischen Augenbewegungen , 1968 .

[202]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[203]  P. Lancaster Curve and surface fitting , 1986 .

[204]  Nancy Kanwisher,et al.  Cerebral Cortex doi:10.1093/cercor/bhr357 Higher Level Visual Cortex Represents Retinotopic, Not Spatiotopic, Object Location , 2011 .

[205]  M. Rosa,et al.  Visual areas in lateral and ventral extrastriate cortices of the marmoset monkey , 2000, The Journal of comparative neurology.

[206]  Thomas U. Otto,et al.  The flight path of the phoenix--the visible trace of invisible elements in human vision. , 2006, Journal of vision.

[207]  Mi Sereno,et al.  Cognitive Science Society. , 2022 .

[208]  J. Kaas,et al.  Evidence from V1 connections for both dorsal and ventral subdivisions of V3 in three species of new world monkeys , 2002, The Journal of comparative neurology.

[209]  James J. DiCarlo,et al.  How Does the Brain Solve Visual Object Recognition? , 2012, Neuron.

[210]  R. Remington,et al.  Eye Movement Targets Are Released from Visual Crowding , 2013, The Journal of Neuroscience.

[211]  L A Krubitzer,et al.  The dorsomedial visual area of owl monkeys: Connections, myeloarchitecture, and homologies in other primates , 1993, The Journal of comparative neurology.

[212]  P. Thier,et al.  Posterior Parietal Cortex Neurons Encode Target Motion in World-Centered Coordinates , 2004, Neuron.

[213]  Zhicheng Lin Object-centered representations support flexible exogenous visual attention across translation and reflection , 2013, Cognition.

[214]  R. M. Siegel,et al.  Maps of Visual Space in Human Occipital Cortex Are Retinotopic, Not Spatiotopic , 2008, The Journal of Neuroscience.

[215]  S. Zeki Representation of central visual fields in prestriate cortex of monkey. , 1969, Brain research.

[216]  K. Verfaillie,et al.  Parametric integration of visual form across saccades , 2010, Vision Research.

[217]  Maria Concetta Morrone,et al.  Spatiotopic coding and remapping in humans , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[218]  D. Melcher Selective attention and the active remapping of object features in trans-saccadic perception , 2009, Vision Research.

[219]  Wilsaan M. Joiner,et al.  Neuronal mechanisms for visual stability: progress and problems , 2011, Philosophical Transactions of the Royal Society B: Biological Sciences.

[220]  F. Zöllner,et al.  Ueber eine neue Art anorthoskopischer Zerrbilder , 1862 .

[221]  J. Duncan,et al.  Effects of similarity, difficulty, and nontarget presentation on the time course of visual attention , 1997, Perception & psychophysics.

[222]  M I Sereno,et al.  Analysis of retinotopic maps in extrastriate cortex. , 1994, Cerebral cortex.

[223]  Abraham Z. Snyder,et al.  Eye position modulates retinotopic responses in early visual areas: a bias for the straight-ahead direction , 2014, Brain Structure and Function.

[224]  D. V. van Essen,et al.  Processing of color, form and disparity information in visual areas VP and V2 of ventral extrastriate cortex in the macaque monkey , 1986, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[225]  Arash Afraz,et al.  Topography of the motion aftereffect with and without eye movements. , 2008, Journal of vision.

[226]  Frank Bremmer,et al.  Eye position effects in macaque area V4 , 2000, Neuroreport.

[227]  L. Davachi,et al.  Distortion and Signal Loss in Medial Temporal Lobe , 2009, PloS one.

[228]  Ivo D. Popivanov,et al.  Probabilistic and Single-Subject Retinotopic Maps Reveal the Topographic Organization of Face Patches in the Macaque Cortex , 2014, The Journal of Neuroscience.

[229]  Eckart Zimmermann,et al.  Spatial Position Information Accumulates Steadily over Time , 2013, The Journal of Neuroscience.

[230]  D. Snodderly,et al.  Primate area V1: largest response gain for receptive fields in the straight-ahead direction , 2014, Neuroreport.

[231]  L. Palmer,et al.  Retinotopic organization of areas 18 and 19 in the cat , 1979, The Journal of comparative neurology.

[232]  Luiz Carlos L Silveira,et al.  Number and topography of cones, rods and optic nerve axons in New and Old World primates , 2008, Visual Neuroscience.

[233]  B. Wandell,et al.  Mapping Hv4 and Ventral Occipital Cortex: the Venous Eclipse , 2022 .

[234]  C. Galletti,et al.  Connections of the Dorsomedial Visual Area: Pathways for Early Integration of Dorsal and Ventral Streams in Extrastriate Cortex , 2009, The Journal of Neuroscience.

[235]  Y. Sugita,et al.  Surround-contingent tilt aftereffect. , 2014, Journal of vision.

[236]  D. Ts'o,et al.  Visual topography in primate V2: multiple representation across functional stripes , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[237]  M. Goldberg,et al.  Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. , 1995, Journal of neurophysiology.

[238]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[239]  T. Parks POST-RETINAL VISUAL STORAGE. , 1965, The American journal of psychology.

[240]  E. J. Tehovnik,et al.  Eye Movements Modulate Visual Receptive Fields of V4 Neurons , 2001, Neuron.

[241]  G. M. Shambes,et al.  Fractured somatotopy in granule cell tactile areas of rat cerebellar hemispheres revealed by micromapping. , 1978, Brain, behavior and evolution.

[242]  B. Payne,et al.  Representation of the ipsilateral visual field in the transition zone between areas 17 and 18 of the cat's cerebral cortex , 1990, Visual Neuroscience.

[243]  Takeo Watanabe,et al.  The role of parsing in high level motion processing , 1998 .

[244]  Thomas Wachtler,et al.  Perceptual evidence for saccadic updating of color stimuli. , 2008, Journal of vision.

[245]  Leslie G. Ungerleider,et al.  Visual topography of area TEO in the macaque , 1991, The Journal of comparative neurology.

[246]  Martin I. Sereno,et al.  Cortical visual areas in mammals , 1991 .

[247]  John H. R. Maunsell,et al.  Topographic organization of the middle temporal visual area in the macaque monkey: Representational biases and the relationship to callosal connections and myeloarchitectonic boundaries , 1987, The Journal of comparative neurology.

[248]  Duane Denney,et al.  Orientation specificity of visual cortical neurons after head tilt , 2004, Experimental Brain Research.

[249]  Anna Ma-Wyatt,et al.  Saccades actively maintain perceptual continuity , 2004, Nature Neuroscience.

[250]  Luiz Carlos L Silveira,et al.  Developmental sources of conservation and variation in the evolution of the primate eye , 2009, Proceedings of the National Academy of Sciences.

[251]  Timothy E. J. Behrens,et al.  Tools of the trade: psychophysiological interactions and functional connectivity. , 2012, Social cognitive and affective neuroscience.

[252]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[253]  Martin I Sereno,et al.  Brain mapping in animals and humans , 1998, Current Opinion in Neurobiology.

[254]  Damien J. Mannion,et al.  Gain control in the response of human visual cortex to plaids. , 2012, Journal of neurophysiology.

[255]  Christian Bellebaum,et al.  Time course of cross-hemispheric spatial updating in the human parietal cortex , 2006, Behavioural Brain Research.

[256]  D. Burr,et al.  Spatiotopic selectivity of BOLD responses to visual motion in human area MT , 2007, Nature Neuroscience.

[257]  M. Concetta Morrone,et al.  Apparent Position of Visual Targets during Real and Simulated Saccadic Eye Movements , 1997, The Journal of Neuroscience.

[258]  Fuminori Ono,et al.  Time Dilation Induced by Object Motion is Based on Spatiotopic but not Retinotopic Positions , 2011, Front. Psychology.

[259]  S. Celebrini,et al.  Gaze direction controls response gain in primary visual-cortex neurons , 1999, Nature.

[260]  Daniel Yoshor,et al.  Spatial Attention Does Not Strongly Modulate Neuronal Responses in Early Human Visual Cortex , 2007, The Journal of Neuroscience.

[261]  S. Zeki,et al.  Modular Connections between Areas V2 and V4 of Macaque Monkey Visual Cortex , 1989, The European journal of neuroscience.

[262]  R Gattass,et al.  Identification and viuotopic organization of areas PO and POd in Cebus monkey , 1994, The Journal of comparative neurology.

[263]  R. Andersen,et al.  Mechanisms of Heading Perception in Primate Visual Cortex , 1996, Science.

[264]  A Hughes,et al.  The organization of binocular cortex in the primary visual area of the rabbit , 1982, The Journal of comparative neurology.

[265]  James W Bisley,et al.  A Lack of Anticipatory Remapping of Retinotopic Receptive Fields in the Middle Temporal Area , 2011, The Journal of Neuroscience.

[266]  S. Cachel Primate adaptation and evolution , 1989, International Journal of Primatology.

[267]  D. C. Van Essen,et al.  Concurrent processing streams in monkey visual cortex , 1988, Trends in Neurosciences.

[268]  R. Born,et al.  Segregation of global and local motion processing in primate middle temporal visual area , 1993, Nature.

[269]  D. Melcher,et al.  Implicit Attentional Selection of Bound Visual Features , 2005, Neuron.

[270]  P. Thier,et al.  Eye position information is used to compensate the consequences of ocular torsion on V1 receptive fields , 2014, Nature Communications.

[271]  J. Kaas,et al.  Representation of the visual field in striate and adjoining cortex of the owl monkey (Aotus trivirgatus). , 1971, Brain research.

[272]  R. Wurtz Neuronal mechanisms of visual stability , 2008, Vision Research.

[273]  J. Kaas,et al.  Optical imaging reveals retinotopic organization of dorsal V3 in New World owl monkeys , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[274]  P. Corballis,et al.  Electrophysiological correlates of presaccadic remapping in humans. , 2008, Psychophysiology.

[275]  R E Weller,et al.  Subdivisions and connections of inferior temporal cortex in owl monkeys , 1987, The Journal of comparative neurology.

[276]  Alex R. Wade,et al.  Visual field maps and stimulus selectivity in human ventral occipital cortex , 2005, Nature Neuroscience.

[277]  D. Heeger,et al.  Cross-orientation suppression in human visual cortex. , 2011, Journal of neurophysiology.

[278]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[279]  C. Gross,et al.  Topographical organization of cortical afferents to extrastriate visual area PO in the macaque: A dual tracer study , 1988, The Journal of comparative neurology.

[280]  Lawrence C. Sincich,et al.  The circuitry of V1 and V2: integration of color, form, and motion. , 2005, Annual review of neuroscience.

[281]  A. Belopolsky,et al.  Target–Distractor Competition in the Oculomotor System Is Spatiotopic , 2014, The Journal of Neuroscience.