The yeast genome: on the road to the Golden Age.

Having the complete genome sequence of Saccharomyces cerevisiae makes us aware of the ultimate goal of yeast molecular biology: the 'solution' of the cell, that is, an understanding of the function of all approximately 6000 proteins (and a few RNAs) and how they interact with each other and the environment. The recent development of 'genomic' approaches for studying gene function makes this goal seem reachable in the foreseeable future. When this is accomplished, we will have entered a Golden Age, when we will have the information necessary for designing truly incisive experiments to reveal biological function.

[1]  J. Boeke,et al.  Small open reading frames: beautiful needles in the haystack. , 1997, Genome research.

[2]  L. Wodicka,et al.  Genome-wide expression monitoring in Saccharomyces cerevisiae , 1997, Nature Biotechnology.

[3]  B. Dujon The yeast genome project: what did we learn? , 1996, Trends in genetics : TIG.

[4]  J. J. B. Anderson,et al.  Computational identification of cis-acting elements affecting post-transcriptional control of gene expression in Saccharomyces cerevisiae. , 2000, Nucleic acids research.

[5]  Yuh-Jyh Hu,et al.  Combinatorial motif analysis and hypothesis generation on a genomic scale , 2000, Bioinform..

[6]  L Grate,et al.  Test of intron predictions reveals novel splice sites, alternatively spliced mRNAs and new introns in meiotically regulated genes of yeast. , 2000, Nucleic acids research.

[7]  K. H. Wolfe,et al.  Updated map of duplicated regions in the yeast genome. , 1999, Gene.

[8]  J. Heyman,et al.  The Transcriptional Response of Yeast to Saline Stress* , 2000, The Journal of Biological Chemistry.

[9]  R. W. Davis,et al.  Dominant genetics using a yeast genomic library under the control of a strong inducible promoter. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[10]  E. Young,et al.  Trinucleotide repeats are clustered in regulatory genes in Saccharomyces cerevisiae. , 2000, Genetics.

[11]  H. Feldmann,et al.  tRNA genes and retroelements in the yeast genome. , 1998, Nucleic acids research.

[12]  John J. Wyrick,et al.  Chromosomal landscape of nucleosome-dependent gene expression and silencing in yeast , 1999, Nature.

[13]  Ronald W. Davis,et al.  Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. , 1999, Science.

[14]  S. Gygi,et al.  Correlation between Protein and mRNA Abundance in Yeast , 1999, Molecular and Cellular Biology.

[15]  P. Sharp,et al.  G+C content variation along and among Saccharomyces cerevisiae chromosomes. , 1999, Molecular biology and evolution.

[16]  G. Church,et al.  Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. , 2000, Journal of molecular biology.

[17]  D. Botstein,et al.  The transcriptional program of sporulation in budding yeast. , 1998, Science.

[18]  Kara Dolinski,et al.  Integrating functional genomic information into the Saccharomyces Genome Database , 2000, Nucleic Acids Res..

[19]  D Botstein,et al.  Functional Analysis of the Genes of Yeast Chromosome V by Genetic Footprinting , 1996, Science.

[20]  W Li,et al.  Compositional heterogeneity within, and uniformity between, DNA sequences of yeast chromosomes. , 1998, Genome research.

[21]  Lars Juhl Jensen,et al.  Automatic discovery of regulatory patterns in promoter regions based on whole cell expression data and functional annotation , 2000, Bioinform..

[22]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[23]  S. Fields,et al.  A biochemical genomics approach for identifying genes by the activity of their products. , 1999, Science.

[24]  J. van Helden,et al.  Statistical analysis of yeast genomic downstream sequences reveals putative polyadenylation signals. , 2000, Nucleic acids research.

[25]  K. H. Wolfe,et al.  Eukaryote genome duplication - where's the evidence? , 1998, Current opinion in genetics & development.

[26]  J. Hegemann,et al.  Systematic analysis of S. cerevisiae chromosome VIII genes , 1999, Yeast.

[27]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[28]  Dmitrij Frishman,et al.  MIPS: a database for genomes and protein sequences , 1999, Nucleic Acids Res..

[29]  P. Brown,et al.  Whole-genome expression analysis of snf/swi mutants of Saccharomyces cerevisiae. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[30]  G. Church,et al.  Systematic determination of genetic network architecture , 1999, Nature Genetics.

[31]  I. Jonassen,et al.  Predicting gene regulatory elements in silico on a genomic scale. , 1998, Genome research.

[32]  S. Cebrat,et al.  Total number of coding open reading frames in the yeast genome , 1999, Yeast.

[33]  C. Sensen,et al.  Complete DNA sequence of yeast chromosome XI , 1994, Nature.

[34]  B. Barrell,et al.  Life with 6000 Genes , 1996, Science.

[35]  B. Dujon,et al.  Trinucleotide repeats in yeast. , 1997, Research in microbiology.

[36]  R. Mortimer,et al.  Chromosome Mapping in Saccharomyces: Centromere-Linked Genes. , 1960, Genetics.

[37]  T. Ito,et al.  Toward a protein-protein interaction map of the budding yeast: A comprehensive system to examine two-hybrid interactions in all possible combinations between the yeast proteins. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Kei-Hoi Cheung,et al.  Large-scale analysis of the yeast genome by transposon tagging and gene disruption , 1999, Nature.

[39]  K. H. Wolfe,et al.  Molecular evidence for an ancient duplication of the entire yeast genome , 1997, Nature.

[40]  A. Pavesi,et al.  Transfer RNA gene redundancy and translational selection in Saccharomyces cerevisiae. , 1997, Journal of molecular biology.

[41]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Michael E. Cusick,et al.  The Yeast Proteome Database (YPD) and Caenorhabditis elegans Proteome Database (WormPD): comprehensive resources for the organization and comparison of model organism protein information , 2000, Nucleic Acids Res..

[43]  Ronald W. Davis,et al.  Quantitative phenotypic analysis of yeast deletion mutants using a highly parallel molecular bar–coding strategy , 1996, Nature Genetics.

[44]  C. Yanover,et al.  Computer analysis of the entire budding yeast genome for putative targets of the GCN4 transcription factor , 1998, Current Genetics.

[45]  A. Hinnen,et al.  Functional analysis of 150 deletion mutants in Saccharomyces cerevisiae by a systematic approach , 1999, Molecular and General Genetics MGG.

[46]  T. Hughes,et al.  Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. , 2000, Science.

[47]  H. Zhong,et al.  Identification of target sites of the alpha2-Mcm1 repressor complex in the yeast genome. , 1999, Genome research.

[48]  J. Collado-Vides,et al.  A web site for the computational analysis of yeast regulatory sequences , 2000, Yeast.

[49]  B. Séraphin,et al.  A generic protein purification method for protein complex characterization and proteome exploration , 1999, Nature Biotechnology.

[50]  A. Goffeau,et al.  Genome microarray analysis of transcriptional activation in multidrug resistance yeast mutants , 2000, FEBS letters.

[51]  B. Dujon,et al.  Trinucleotide repeats and other microsatellites in yeasts. , 1999, Research in microbiology.

[52]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[53]  A. Goffeau,et al.  The European project for sequencing the yeast genome. , 1991, Research in microbiology.

[54]  Elizabeth A. Winzeler,et al.  Genomic profiling of drug sensitivities via induced haploinsufficiency , 1999, Nature Genetics.

[55]  K. H. Wolfe,et al.  Extent of genomic rearrangement after genome duplication in yeast. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[56]  U. Jung,et al.  Genome‐wide analysis of gene expression regulated by the yeast cell wall integrity signalling pathway , 1999, Molecular microbiology.

[57]  Ian Dix,et al.  Yeast Yeast 2000; 17: 95±110. Research Article , 2000 .

[58]  J. Collado-Vides,et al.  Extracting regulatory sites from the upstream region of yeast genes by computational analysis of oligonucleotide frequencies. , 1998, Journal of molecular biology.

[59]  S. Eddy,et al.  A computational screen for methylation guide snoRNAs in yeast. , 1999, Science.

[60]  S. Cebrat,et al.  Origin and properties of non-coding ORFs in the yeast genome. , 1999, Nucleic acids research.

[61]  D Haussler,et al.  Genome-wide bioinformatic and molecular analysis of introns in Saccharomyces cerevisiae. , 1999, RNA.

[62]  P. Brown,et al.  Characterization of three related glucose repressors and genes they regulate in Saccharomyces cerevisiae. , 1998, Genetics.

[63]  P. Slonimski,et al.  Chemotyping of yeast mutants using robotics , 1999, Yeast.

[64]  J. Rine Gene overexpression in studies of Saccharomyces cerevisiae. , 1991, Methods in enzymology.

[65]  K. H. Wolfe,et al.  Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi , 1998, Yeast.

[66]  G. Church,et al.  Finding DNA regulatory motifs within unaligned noncoding sequences clustered by whole-genome mRNA quantitation , 1998, Nature Biotechnology.

[67]  D. Botstein,et al.  Genome-wide characterization of the Zap1p zinc-responsive regulon in yeast. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[68]  R Parker,et al.  Analysis of the yeast genome: identification of new non-coding and small ORF-containing RNAs. , 1997, Nucleic acids research.

[69]  P. Brown,et al.  Exploring the metabolic and genetic control of gene expression on a genomic scale. , 1997, Science.