Effect of morphology and space charge on conduction through porous doped ceria

[1]  R. Birringer,et al.  Numerical analysis of space charge layers and electrical conductivity in mesoscopic cerium oxide crystals , 2004 .

[2]  Piotr Jasinski,et al.  Nanocrystalline undoped ceria oxygen sensor , 2003 .

[3]  Igor Lubomirsky,et al.  Modeling of space-charge effects in nanocrystalline ceramics: The influence of geometry , 2002 .

[4]  Xin Guo,et al.  Grain Boundary Blocking Effect in Zirconia: A Schottky Barrier Analysis , 2001 .

[5]  Andreas Tschöpe,et al.  Grain size-dependent electrical conductivity of polycrystalline cerium oxide II: Space charge model , 2001 .

[6]  R. Birringer,et al.  Grain size-dependent electrical conductivity of polycrystalline cerium oxide: I. Experiments , 2001 .

[7]  S. Chan,et al.  Ionic conductivities, sintering temperatures and microstructures of bulk ceramic CeO2 doped with Y2O3 , 2000 .

[8]  M. Dokiya,et al.  Electrical and Ionic Conductivity of Gd‐Doped Ceria , 2000 .

[9]  A. Virkar,et al.  Effect of microstructure and composition on ionic conductivity of rare-earth oxide-doped ceria , 1998 .

[10]  L. Gauckler,et al.  Nonstoichiometry and Defect Chemistry of Ceria Solid Solutions , 1997 .

[11]  Xin Guo Effect of Nb2O5 on the space-charge conduction of Y2O3-stabilized ZrO21 , 1997 .

[12]  Xin Guo Physical origin of the intrinsic grain-boundary resistivity of stabilized-zirconia: Role of the space-charge layers , 1995 .

[13]  H.-J. Beie,et al.  Oxygen gas sensors based on CeO2 thick and thin films , 1991 .

[14]  J. Baumard,et al.  Nonlinear Electrical Properties of Grain Boundaries in an Oxygen‐Ion Conductor (CeO2· Y2O3) , 1987 .

[15]  R. Gerhardt,et al.  Grain‐Boundary Effect in Ceria Doped with Trivalent Cations: I, Electrical Measurements , 1986 .

[16]  A. Hammou,et al.  “Grain boundary effect” on ceria based solid solutions , 1983 .

[17]  A. Brailsford,et al.  The electrical characterization of ceramic oxides , 1983 .

[18]  D. Park,et al.  Oxygen-ion conductivity and defect interactions in yttria-doped ceria , 1981 .

[19]  A. Nowick,et al.  The “grain-boundary effect” in doped ceria solid electrolytes , 1980 .

[20]  Harry L. Tuller,et al.  Defect Structure and Electrical Properties of Nonstoichiometric CeO2 Single Crystals , 1979 .

[21]  J. Koehler,et al.  Space Charge in Ionic Crystals. I. General Approach with Application to NaCl , 1965 .

[22]  K. Lehovec Space‐Charge Layer and Distribution of Lattice Defects at the Surface of Ionic Crystals , 1953 .

[23]  Xin Guo,et al.  Blocking Grain Boundaries in Yttria‐Doped and Undoped Ceria Ceramics of High Purity , 2003 .

[24]  K. Neoh,et al.  Electroless Plating of Copper on Poly(tetrafluoroethylene) Films Modified by Surface Graft Copolymerization and Quaternization , 2002 .

[25]  S. Singhal,et al.  Polarization Effects in Intermediate Temperature, Anode‐Supported Solid Oxide Fuel Cells , 1999 .

[26]  D. McLachlan,et al.  Brick Layer Model Analysis of Nanoscale-to-Microscale Cerium Dioxide , 1999 .

[27]  D. Blom,et al.  Defect thermodynamics and electrical properties of nanocrystalline oxides: pure and doped CeO2 , 1997 .

[28]  F. Berkel,et al.  Microstructure — ionic conductivity relationships in ceria-gadolinia electrolytes , 1996 .

[29]  L. Dessemond,et al.  Model for ion-blocking at internal interfaces in zirconias , 1995 .

[30]  J. Maier On the Conductivity of Polycrystalline Materials , 1986 .

[31]  J. Frankel Kinetic theory of liquids , 1946 .