Nondeterministic Syntactic Complexity

We introduce a new measure on regular languages: their nondeterministic syntactic complexity. It is the least degree of any extension of the ‘canonical boolean representation’ of the syntactic monoid. Equivalently, it is the least number of states of any subatomic nondeterministic acceptor. It turns out that essentially all previous structural work on nondeterministic state-minimality computes this measure. Our approach rests on an algebraic interpretation of nondeterministic finite automata as deterministic finite automata endowed with semilattice structure. Crucially, the latter form a self-dual category.

[1]  Tao Jiang,et al.  The Structure and Complexity of Minimal NFA's over a Unary Alphabet , 1991, FSTTCS.

[2]  Tsunehiko Kameda,et al.  On the State Minimization of Nondeterministic Finite Automata , 1970, IEEE Transactions on Computers.

[3]  Jirí Adámek,et al.  On Continuous Nondeterminism and State Minimality , 2014, MFPS.

[4]  Lorenzo Clemente,et al.  Efficient reduction of nondeterministic automata with application to language inclusion testing , 2017, Log. Methods Comput. Sci..

[5]  Libor Polák Syntactic Semiring of a Language , 2001, MFCS.

[6]  Hartmut Klauck,et al.  Communication Complexity Method for Measuring Nondeterminism in Finite Automata , 2002, Inf. Comput..

[7]  Alexandra Silva,et al.  A (co)algebraic theory of succinct automata , 2019, J. Log. Algebraic Methods Program..

[8]  Thomas A. Henzinger,et al.  Antichains: A New Algorithm for Checking Universality of Finite Automata , 2006, CAV.

[9]  Jirí Adámek,et al.  Coalgebraic constructions of canonical nondeterministic automata , 2015, Theor. Comput. Sci..

[10]  Frank R. Kschischang The trellis structure of maximal fixed-cost codes , 1996, IEEE Trans. Inf. Theory.

[11]  M. Arbib,et al.  Adjoint machines, state-behavior machines, and duality☆ , 1975 .

[12]  Tao Jiang,et al.  Minimal NFA Problems are Hard , 1991, SIAM J. Comput..

[13]  Robert Samuel Ralph Myers Nondeterministic Automata and JSL-dfas , 2020, ArXiv.

[14]  Markus Holzer,et al.  Finding Lower Bounds for Nondeterministic State Complexity Is Hard , 2006, Developments in Language Theory.

[15]  J. Conway Regular algebra and finite machines , 1971 .

[16]  Robert S. R. Myers Representing Semilattices as Relations , 2020, 2007.10277.

[17]  Peter Jipsen,et al.  Categories of Algebraic Contexts Equivalent to Idempotent Semirings and Domain Semirings , 2012, RAMiCS.

[18]  Brink van der Merwe,et al.  Reducing Nondeterministic Finite Automata with SAT Solvers , 2009, FSMNLP.

[19]  Roland Carl Backhouse Factor theory and the unity of opposites , 2016, J. Log. Algebraic Methods Program..

[20]  Joseph A. Goguen,et al.  Discrete-Time Machines in Closed Monoidal Categories. I , 1975, J. Comput. Syst. Sci..

[21]  Janusz A. Brzozowski,et al.  Theory of átomata , 2011, Theor. Comput. Sci..

[22]  Alfred Horn,et al.  The category of semilattices , 1971 .

[23]  Michel Latteux,et al.  Minimal NFA and biRFSA Languages , 2009, RAIRO Theor. Informatics Appl..

[24]  Dana Angluin,et al.  Inference of Reversible Languages , 1982, JACM.

[25]  Marek Chrobak,et al.  Finite Automata and Unary Languages , 1986, Theor. Comput. Sci..

[26]  Pawel Gawrychowski Chrobak Normal Form Revisited, with Applications , 2011, CIAA.

[27]  Esko Ukkonen,et al.  Bideterministic Automata and Minimal Representations of Regular Languages , 2003, CIAA.

[28]  G. Grätzer General Lattice Theory , 1978 .

[29]  Janusz A. Brzozowski,et al.  Derivatives of Regular Expressions , 1964, JACM.

[30]  Gregor Gramlich Probabilistic and Nondeterministic Unary Automata , 2003, MFCS.

[31]  Hellis Tamm New Interpretation and Generalization of the Kameda-Weiner Method , 2016, ICALP.

[32]  M. Arbib,et al.  Fuzzy machines in a category , 1975, Bulletin of the Australian Mathematical Society.

[33]  George Markowsky,et al.  Primes, irreducibles and extremal lattices , 1992 .

[34]  Benjamin Steinberg,et al.  Representation Theory of Finite Semigroups over Semirings , 2010, 1004.1660.

[35]  B. Sundar Rajan,et al.  On viewing block codes as finite automata , 2003, Theor. Comput. Sci..

[36]  Aurélien Lemay,et al.  Residual Finite State Automata , 2002, Fundam. Informaticae.

[37]  Jean-Éric Pin,et al.  On Reversible Automata , 1992, LATIN.