Tracing euxinia by molybdenum concentrations in sediments using handheld x-ray fluorescence spectroscopy (HHXRF)

[1]  F. Anselmetti,et al.  Combining sedimentological, trace metal (Mn, Mo) and molecular evidence for reconstructing past water-column redox conditions: The example of meromictic Lake Cadagno (Swiss Alps) , 2013 .

[2]  P. Ditchfield,et al.  Carbon-isotope stratigraphy from terrestrial organic matter through the Monterey event, Miocene, New Jersey margin (IODP Expedition 313) , 2013 .

[3]  S. Sommer,et al.  The manganese and iron shuttle in a modern euxinic basin and implications for molybdenum cycling at euxinic ocean margins , 2013 .

[4]  K. Grice,et al.  Elevated pCO2 leading to Late Triassic extinction, persistent photic zone euxinia, and rising sea levels , 2013 .

[5]  Dhwani K. Desai,et al.  Giant Hydrogen Sulfide Plume in the Oxygen Minimum Zone off Peru Supports Chemolithoautotrophy , 2013, PloS one.

[6]  J. Fitts,et al.  Molybdenum reduction in a sulfidic lake: Evidence from X-ray absorption fine-structure spectroscopy and implications for the Mo paleoproxy , 2013 .

[7]  W. Dickinson Rejection of the lake spillover model for initial incision of the Grand Canyon, and discussion of alternatives , 2013 .

[8]  T. Lyons,et al.  Contrasting molybdenum cycling and isotopic properties in euxinic versus non-euxinic sediments and sedimentary rocks: Refining the paleoproxies , 2012 .

[9]  H. Rowe,et al.  The quantification and application of handheld energy-dispersive x-ray fluorescence (ED-XRF) in mudrock chemostratigraphy and geochemistry , 2012 .

[10]  A. Anbar,et al.  Extreme change in sulfide concentrations in the Black Sea during the Little Ice Age reconstructed using molybdenum isotopes , 2012 .

[11]  D. Canfield,et al.  A sulfidic driver for the end-Ordovician mass extinction , 2012 .

[12]  B. Thamdrup,et al.  Controls on Mo isotope fractionations in a Mn-rich anoxic marine sediment, Gullmar Fjord, Sweden , 2012 .

[13]  A. Knoll,et al.  Molybdenum evidence for expansive sulfidic water masses in ~ 750 Ma oceans , 2011 .

[14]  M. Böttcher,et al.  Molybdenum isotope fractionation in pelagic euxinia: Evidence from the modern Black and Baltic Seas , 2011 .

[15]  D. Z. Piper,et al.  Holocene and late glacial palaeoceanography and palaeolimnology of the Black Sea: Changing sediment provenance and basin hydrography over the past 20,000 years , 2011 .

[16]  A. Anbar,et al.  The molecular mechanism of Mo isotope fractionation during adsorption to birnessite , 2011 .

[17]  I. Ciglenečki,et al.  New model for molybdenum behavior in euxinic waters , 2011 .

[18]  A. Knoll,et al.  Geochemical evidence for widespread euxinia in the Later Cambrian ocean , 2011, Nature.

[19]  Sarah J. Davies,et al.  Algal Blooms and “Marine Snow”: Mechanisms That Enhance Preservation of Organic Carbon in Ancient Fine-Grained Sediments , 2010 .

[20]  Andrew H Knoll,et al.  Devonian rise in atmospheric oxygen correlated to the radiations of terrestrial plants and large predatory fish , 2010, Proceedings of the National Academy of Sciences.

[21]  G. Stuart,et al.  Melt‐induced seismic anisotropy and magma assisted rifting in Ethiopia: Evidence from surface waves , 2010 .

[22]  H. Jenkyns Geochemistry of oceanic anoxic events , 2010 .

[23]  D. Canfield,et al.  The behavior of molybdenum and its isotopes across the chemocline and in the sediments of sulfidic Lake Cadagno, Switzerland , 2010 .

[24]  J. Pattan,et al.  Bottom water oxygenation history in southeastern Arabian Sea during the past 140 ka: Results from redox-sensitive elements , 2009 .

[25]  W. Berelson,et al.  Molybdenum behavior during early diagenesis: Insights from Mo isotopes , 2009 .

[26]  L. Krystyn,et al.  Triassic–Jurassic organic carbon isotope stratigraphy of key sections in the western Tethys realm (Austria) , 2009 .

[27]  A. Anbar,et al.  Tracking Euxinia in the Ancient Ocean: A Multiproxy Perspective and Proterozoic Case Study , 2009 .

[28]  B. Schmitz,et al.  Cambrian high-resolution biostratigraphy and carbon isotope chemostratigraphy in Scania, Sweden: first record of the SPICE and DICE excursions in Scandinavia , 2009 .

[29]  R. Amann,et al.  Detoxification of sulphidic African shelf waters by blooming chemolithotrophs , 2009, Nature.

[30]  H. Moseley,et al.  THE HIGH FREQUENCY SPECTRA OF THE ELEMENTS By , 2009 .

[31]  R. Howarth,et al.  Basinal restriction, black shales, Re‐Os dating, and the Early Toarcian (Jurassic) oceanic anoxic event , 2008 .

[32]  M. Böttcher,et al.  Sulfidity controls molybdenum isotope fractionation into euxinic sediments: Evidence from the modern Black Sea , 2008 .

[33]  Helen McGregor,et al.  Mid‐Holocene ENSO: Issues in quantitative model‐proxy data comparisons , 2008 .

[34]  M. J. Kranendonk,et al.  On the Geologic Time Scale 2008 , 2008 .

[35]  L. Kump,et al.  Oceanic Euxinia in Earth History: Causes and Consequences , 2008 .

[36]  A. Anbar,et al.  Tracing the stepwise oxygenation of the Proterozoic ocean , 2008, Nature.

[37]  A. Tessier,et al.  Geochemical and anthropogenic enrichments of Mo in sediments from perennially oxic and seasonally anoxic lakes in Eastern Canada , 2008 .

[38]  H. Jenkyns,et al.  Cretaceous oceanic anoxic events: causes and consequences , 2007 .

[39]  A. J. Kaufman,et al.  A Whiff of Oxygen Before the Great Oxidation Event? , 2007, Science.

[40]  K. Föllmi,et al.  Interactions between environmental change and shallow water carbonate buildup along the northern Tethyan margin and their impact on the Early Cretaceous carbon isotope record , 2006 .

[41]  T. Lyons,et al.  Trace metals as paleoredox and paleoproductivity proxies: An update , 2006 .

[42]  J. Kramers,et al.  Evidence for a gradual rise of oxygen between 2.6 and 2.5 Ga from Mo isotopes and Re-PGE signatures in shales , 2006 .

[43]  H. D. Holland,et al.  The oxygenation of the atmosphere and oceans , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[44]  Thomas J. Algeo,et al.  Mo–total organic carbon covariation in modern anoxic marine environments: Implications for analysis of paleoredox and paleohydrographic conditions , 2006 .

[45]  S. Emerson,et al.  Diagenesis of oxyanions (V, U, Re, and Mo) in pore waters and sediments from a continental margin , 2005 .

[46]  A. Knoll,et al.  Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea , 2005, Nature.

[47]  B. Lauridsen,et al.  THE UPPER CAMBRIAN TRILOBITE OLENUS AT ANDRARUM, SWEDEN: A CASE OF ITERATIVE EVOLUTION? , 2005 .

[48]  D. Canfield THE EARLY HISTORY OF ATMOSPHERIC OXYGEN: Homage to Robert M. Garrels , 2005 .

[49]  M. Kölling,et al.  Fast application of X-ray fluorescence spectrometry aboard ship: how good is the new portable Spectro Xepos analyser? , 2005 .

[50]  D. Canfield,et al.  Development of a sequential extraction procedure for iron: implications for iron partitioning in continentally derived particulates , 2005 .

[51]  T. Lyons,et al.  Enhanced trapping of molybdenum by sulfurized marine organic matter of marine origin in Mesozoic limestones and shales , 2004 .

[52]  J. Kallmeyer,et al.  Geochemistry of Peruvian near-surface sediments , 2004 .

[53]  D. Canfield,et al.  The transition to a sulphidic ocean ∼ 1.84 billion years ago , 2004, Nature.

[54]  G. Helz,et al.  Molybdenum scavenging by iron monosulfide. , 2004, Environmental science & technology.

[55]  A. Anbar Molybdenum Stable Isotopes: Observations, Interpretations and Directions , 2004 .

[56]  Scarla J. Weeks,et al.  Hydrogen sulphide eruptions in the Atlantic Ocean off southern Africa: implications of a new view based on SeaWiFS satellite imagery , 2004 .

[57]  G. Helz,et al.  Capture of molybdenum in pyrite-forming sediments: role of ligand-induced reduction by polysulfides , 2004 .

[58]  J. Kramers,et al.  Molybdenum isotope records as a potential new proxy for paleoceanography , 2003 .

[59]  B. Bostick,et al.  Differential adsorption of molybdate and tetrathiomolybdate on pyrite (FeS2). , 2003, Environmental science & technology.

[60]  G. Chaillou,et al.  The distribution of Mo, U, and Cd in relation to major redox species in muddy sediments of the Bay of Biscay , 2002 .

[61]  M. Mottl,et al.  Trace element and REE composition of a low-temperature ridge-flank hydrothermal spring , 2002 .

[62]  G. Helz,et al.  Catalysis by mineral surfaces. Implications for Mo geochemistry in anoxic environments , 2002 .

[63]  Z. Chai,et al.  Determination of Platinum‐Group Elements and Forty Two Other Elements in Two Candidate Danish Cretaceous‐Tertiary Boundary Clay Reference Materials by INAA, ENAA and RNAA , 2001 .

[64]  R. Anderson,et al.  Authigenic molybdenum formation in marine sediments: A link to pore water sulfide in the Santa Barbara Basin , 2000 .

[65]  M. Thiemens,et al.  Atmospheric influence of Earth's earliest sulfur cycle , 2000, Science.

[66]  B. Erickson,et al.  Molybdenum(VI) speciation in sulfidic waters:. Stability and lability of thiomolybdates , 2000 .

[67]  S. Emerson,et al.  The geochemistry of redox sensitive trace metals in sediments , 1999 .

[68]  B. Schnetger Trace element analysis of sediments by HR-ICP-MS using low and medium resolution and different acid digestions , 1997 .

[69]  Isozaki,et al.  Permo-Triassic Boundary Superanoxia and Stratified Superocean: Records from Lost Deep Sea , 1997, Science.

[70]  H. Barnes,et al.  THE SIZE DISTRIBUTION OF FRAMBOIDAL PYRITE IN MODERN SEDIMENTS : AN INDICATOR OF REDOX CONDITIONS , 1996 .

[71]  R. Pattrick,et al.  Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence , 1996 .

[72]  A. Knoll,et al.  Comparative Earth History and Late Permian Mass Extinction , 1996, Science.

[73]  K. Govindaraju,et al.  1994 REPORT ON ZINNWALDITE ZW‐C ANALYSED BY NINETY‐TWO GIT‐IWG MEMBER‐LABORATORIES , 1994 .

[74]  K. Govindaraju,et al.  1994 compilation of working values and sample description for 383 geostandards , 1994 .

[75]  S. Calvert,et al.  Geochemistry of Recent oxic and anoxic marine sediments: Implications for the geological record , 1993 .

[76]  J. Morse,et al.  Pyritization of trace metals in anoxic marine sediments , 1992 .

[77]  S. Emerson,et al.  Ocean anoxia and the concentrations of molybdenum and vanadium in seawater , 1991 .

[78]  R. Jahnke,et al.  Early diagenesis in differing depositional environments: The response of transition metals in pore water , 1990 .

[79]  F. Millero,et al.  The pK1* for the dissociation of H2S in various ionic media , 1988 .

[80]  G. Shimmield,et al.  The behaviour of molybdenum and manganese during early sediment diagenesis — offshore Baja California, Mexico , 1986 .

[81]  S. Malcolm Early diagenesis of molybdenum in estuarine sediments , 1985 .

[82]  M. Bender,et al.  Fate of organic carbon reaching the deep sea floor: a status report☆ , 1984 .

[83]  M. Gaffey,et al.  The Chemical Evolution of the Atmosphere and Oceans , 1984 .

[84]  M. Bruin,et al.  Distribution of minor elements in cores from the Southwest Africa shelf with notes on plankton and fish mortality , 1980 .

[85]  K. Turekian,et al.  Molybdenum in marine deposits , 1973 .

[86]  H. Moseley,et al.  XCIII. The high-frequency spectra of the elements , 1913 .