Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on ℝ3
暂无分享,去创建一个
H. Takaoka | T. Tao | J. Colliander | G. Staffilani | M. Keel | H. Takaoka | J. Colliander | T. Tao | M. Keel | G. Staffilani
[1] Terence Tao. Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations , 2000 .
[2] Thierry Cazenave,et al. The Cauchy problem for the nonlinear Schrödinger equation in H1 , 1988 .
[3] W. Strauss,et al. Decay and scattering of solutions of a nonlinear Schrödinger equation , 1978 .
[4] Michael Taylor,et al. Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .
[5] I. Segal. Space-time decay for solutions of wave equations , 1976 .
[6] J. Ginibre,et al. Scattering theory in the energy space for a class of nonlinear Schrödinger equations , 1985 .
[7] J. Bourgain. Scattering in the energy space and below for 3D NLS , 1998 .
[8] Terence Tao,et al. Global Well-Posedness for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..
[9] Terence Tao,et al. A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..
[10] H. Takaoka,et al. Almost conservation laws and global rough solutions to a Nonlinear Schr , 2002, math/0203218.
[11] Terence Tao. Global Regularity of Wave Maps¶II. Small Energy in Two Dimensions , 2001 .
[12] Global well-posedness and scattering for the energy-critical nonlinear Schr\"odinger equation in R^3 , 2004, math/0402129.
[13] J. Bourgain. Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case , 1999 .
[14] Luis Vega,et al. Quadratic forms for the 1-D semilinear Schrödinger equation , 1996 .
[15] Terence Tao,et al. Sharp global well-posedness for KdV and modified KdV on ℝ and , 2003 .
[16] YeYaojun. GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .
[17] H. Triebel. TOOLS FOR PDE: PSEUDODIFFERENTIAL OPERATORS, PARADIFFERENTIAL OPERATORS, AND LAYER POTENTIALS (Mathematical Surveys and Monographs 81) , 2001 .
[18] Robert S. Strichartz,et al. Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .
[19] H. Takaoka,et al. Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ , 2001 .
[20] J. Ginibre,et al. Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .
[21] T. Tao,et al. Endpoint Strichartz estimates , 1998 .
[22] H. Takaoka,et al. GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗ , 2001 .
[23] C. Kenig,et al. Bilinear estimates and applications to 2d NLS , 2001 .
[24] K. Yajima. Existence of solutions for Schrödinger evolution equations , 1987 .
[25] Terence Tao,et al. Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data , 1998 .
[26] Tosio Kato,et al. Commutator estimates and the euler and navier‐stokes equations , 1988 .
[27] Y. Meyer,et al. Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .
[28] M. Weinstein,et al. Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .
[29] J. Bourgain,et al. Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity , 1998 .
[30] Cathleen S. Morawetz,et al. Time decay for the nonlinear Klein-Gordon equation , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.
[31] Paul H. Rabinowitz,et al. On a class of nonlinear Schrödinger equations , 1992 .
[32] Terence Tao,et al. Multilinear estimates for periodic KdV equations, and applications , 2001, math/0110049.