Global existence and scattering for rough solutions of a nonlinear Schrödinger equation on ℝ3

We prove global existence and scattering for the defocusing, cubic nonlinear Schrodinger equation in H s (R 3 ) for s > 4 . The main new estimate in the argument is a Morawetz-type inequality for the solution �. This estimate bounds k �(x,t)k L 4(R3×R) , whereas the well-known Morawetz-type estimate of Lin-Strauss controls R 1 0 R R3 (�(x,t))4 |x| dxdt.

[1]  Terence Tao Multilinear weighted convolution of L2 functions, and applications to nonlinear dispersive equations , 2000 .

[2]  Thierry Cazenave,et al.  The Cauchy problem for the nonlinear Schrödinger equation in H1 , 1988 .

[3]  W. Strauss,et al.  Decay and scattering of solutions of a nonlinear Schrödinger equation , 1978 .

[4]  Michael Taylor,et al.  Tools for Pde: Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials , 2000 .

[5]  I. Segal Space-time decay for solutions of wave equations , 1976 .

[6]  J. Ginibre,et al.  Scattering theory in the energy space for a class of nonlinear Schrödinger equations , 1985 .

[7]  J. Bourgain Scattering in the energy space and below for 3D NLS , 1998 .

[8]  Terence Tao,et al.  Global Well-Posedness for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..

[9]  Terence Tao,et al.  A Refined Global Well-Posedness Result for Schrödinger Equations with Derivative , 2001, SIAM J. Math. Anal..

[10]  H. Takaoka,et al.  Almost conservation laws and global rough solutions to a Nonlinear Schr , 2002, math/0203218.

[11]  Terence Tao Global Regularity of Wave Maps¶II. Small Energy in Two Dimensions , 2001 .

[12]  Global well-posedness and scattering for the energy-critical nonlinear Schr\"odinger equation in R^3 , 2004, math/0402129.

[13]  J. Bourgain Global wellposedness of defocusing critical nonlinear Schrödinger equation in the radial case , 1999 .

[14]  Luis Vega,et al.  Quadratic forms for the 1-D semilinear Schrödinger equation , 1996 .

[15]  Terence Tao,et al.  Sharp global well-posedness for KdV and modified KdV on ℝ and , 2003 .

[16]  YeYaojun GLOBAL SOLUTIONS OF NONLINEAR SCHRODINGER EQUATIONS , 2005 .

[17]  H. Triebel TOOLS FOR PDE: PSEUDODIFFERENTIAL OPERATORS, PARADIFFERENTIAL OPERATORS, AND LAYER POTENTIALS (Mathematical Surveys and Monographs 81) , 2001 .

[18]  Robert S. Strichartz,et al.  Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations , 1977 .

[19]  H. Takaoka,et al.  Sharp Global well-posedness for KdV and modified KdV on $\R$ and $\T$ , 2001 .

[20]  J. Ginibre,et al.  Smoothing properties and retarded estimates for some dispersive evolution equations , 1992 .

[21]  T. Tao,et al.  Endpoint Strichartz estimates , 1998 .

[22]  H. Takaoka,et al.  GLOBAL WELL-POSEDNESS FOR SCHR ¨ ODINGER EQUATIONS WITH DERIVATIVE ∗ , 2001 .

[23]  C. Kenig,et al.  Bilinear estimates and applications to 2d NLS , 2001 .

[24]  K. Yajima Existence of solutions for Schrödinger evolution equations , 1987 .

[25]  Terence Tao,et al.  Local and global well-posedness of wave maps on $\R^{1+1}$ for rough data , 1998 .

[26]  Tosio Kato,et al.  Commutator estimates and the euler and navier‐stokes equations , 1988 .

[27]  Y. Meyer,et al.  Commutateurs d'intégrales singulières et opérateurs multilinéaires , 1978 .

[28]  M. Weinstein,et al.  Dispersion of small amplitude solutions of the generalized Korteweg-de Vries equation , 1991 .

[29]  J. Bourgain,et al.  Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity , 1998 .

[30]  Cathleen S. Morawetz,et al.  Time decay for the nonlinear Klein-Gordon equation , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[31]  Paul H. Rabinowitz,et al.  On a class of nonlinear Schrödinger equations , 1992 .

[32]  Terence Tao,et al.  Multilinear estimates for periodic KdV equations, and applications , 2001, math/0110049.