Geometric tilt-to-length coupling in precision interferometry: mechanisms and analytical descriptions

Tilt-to-length (TTL) coupling is a technical term for the cross-coupling of angular or lateral jitter into an interferometric phase signal. It is an important noise source in precision interferometers and originates either from changes in the optical path lengths or from wavefront and clipping effects. Within this paper, we focus on geometric TTL coupling and categorise it into a number of different mechanisms for which we give analytic expressions. We then show that this geometric description is not always sufficient to predict the TTL coupling noise within an interferometer. We, therefore, discuss how understanding the geometric effects allows TTL noise reduction already by smart design choices. Additionally, they can be used to counteract the total measured TTL noise in a system. The presented content applies to a large variety of precision interferometers, including space gravitational wave detectors like LISA.

[1]  G. Heinzel,et al.  Postprocessing subtraction of tilt-to-length noise in LISA , 2022, Physical Review D.

[2]  Yongho Lee Development of an advanced tilt actuator for tilt-to-length coupling investigations , 2021 .

[3]  Bin Wang,et al.  Concepts and status of Chinese space gravitational wave detection projects , 2021, Nature Astronomy.

[4]  G. Heinzel,et al.  Tilt-to-Length Coupling in the GRACE Follow-On Laser Ranging Interferometer , 2020 .

[5]  M. Álvarez,et al.  Tracking Length and Differential-Wavefront-Sensing Signals from Quadrant Photodiodes in Heterodyne Interferometers with Digital Phase-Locked-Loop Readout , 2020, 2005.00003.

[6]  T. S. Schwarze,et al.  Optical Suppression of Tilt-to-Length Coupling in the LISA Long-Arm Interferometer , 2020, Physical Review Applied.

[7]  R. Cai,et al.  The LISA–Taiji network , 2020, Nature Astronomy.

[8]  Martin Gohlke,et al.  In-Orbit Performance of the GRACE Follow-on Laser Ranging Interferometer. , 2019, Physical review letters.

[9]  S. Mottini,et al.  Telescope jitters and phase noise in the LISA interferometer. , 2019, Optics express.

[10]  C. Braxmaier,et al.  Laser-dilatometer calibration using a single-crystal silicon sample , 2019, International Journal of Optomechatronics.

[11]  C. Sasso,et al.  Coupling of wavefront errors and pointing jitter in the LISA interferometer: misalignment of the interfering wavefronts , 2018, Classical and Quantum Gravity.

[12]  S. Mottini,et al.  Coupling of wavefront errors and jitter in the LISA interferometer: far-field propagation , 2018, Classical and Quantum Gravity.

[13]  Salvatore J. Vitale,et al.  Calibrating the system dynamics of LISA Pathfinder , 2018, Physical Review D.

[14]  T. S. Schwarze,et al.  Reducing tilt-to-length coupling for the LISA test mass interferometer , 2017, 1711.10320.

[15]  Wen-Rui Hu,et al.  The Taiji Program in Space for gravitational wave physics and the nature of gravity , 2017 .

[16]  N. Karnesis,et al.  Preliminary results on the suppression of sensing cross-talk in LISA Pathfinder , 2017 .

[17]  G. Heinzel,et al.  Spatially resolved photodiode response for simulating precise interferometers. , 2016, Applied optics.

[18]  J. P. López-Zaragoza,et al.  Sub-Femto-g Free Fall for Space-Based Gravitational Wave Observatories: LISA Pathfinder Results. , 2016, Physical review letters.

[19]  Gerhard Heinzel,et al.  Experimental demonstration of reduced tilt-to-length coupling by a two-lens imaging system. , 2016, Optics express.

[20]  Yan Wang,et al.  TianQin: a space-borne gravitational wave detector , 2015, 1512.02076.

[21]  Gerhard Heinzel,et al.  A brief comparison of optical pathlength difference and various definitions for the interferometric phase , 2015 .

[22]  Gerhard Heinzel,et al.  Vanishing tilt-to-length coupling for a singular case in two-beam laser interferometers with Gaussian beams. , 2014, Applied optics.

[23]  G. Heinzel,et al.  Analytical description of interference between two misaligned and mismatched complete Gaussian beams. , 2014, Applied optics.

[24]  Karsten Danzmann,et al.  Simulating and Optimizing Laser Interferometers , 2013 .

[25]  Karsten Danzmann,et al.  Methods for simulating the readout of lengths and angles in laser interferometers with Gaussian beams , 2012 .

[26]  Karsten Danzmann,et al.  Intersatellite laser ranging instrument for the GRACE follow-on mission , 2012, Journal of Geodesy.

[27]  L. G. Boté,et al.  Laser Interferometer Space Antenna , 2012 .

[28]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[29]  C. Speake,et al.  Mirror tilt immunity interferometry with a cat's eye retroreflector. , 2011, Applied optics.

[30]  G. Wanner Complex optical systems in space : numerical modelling of the heterodyne interferometry of LISA Pathfinder and LISA , 2010 .

[31]  O. Jennrich,et al.  LISA technology and instrumentation , 2009, 0906.2901.

[32]  Ulrich Johann,et al.  Interferometry for the LISA technology package (LTP) aboard SMART-2 , 2003 .

[33]  B. J. Meers,et al.  Automatic alignment of optical interferometers. , 1994, Applied optics.