Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations

In this paper we study the diffusion approximation of a swarming model given by a system of interacting Langevin equations with nonlinear friction. The diffusion approximation requires the calculation of the drift and diffusion coefficients that are given as averages of solutions to appropriate Poisson equations. We present a new numerical method for computing these coefficients that is based on the calculation of the eigenvalues and eigenfunctions of a Schrodinger operator. These theoretical results are supported by numerical simulations showcasing the efficiency of the method.

[1]  Kristian Kirsch,et al.  Methods Of Modern Mathematical Physics , 2016 .

[2]  F. Hérau,et al.  Magnetic WKB Constructions , 2014, Archive for Rational Mechanics and Analysis.

[3]  Peter R. Kramer,et al.  Numerical methods for computing effective transport properties of flashing Brownian motors , 2013, J. Comput. Phys..

[4]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[5]  Francesco Vecil,et al.  A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations , 2013 .

[6]  Tomasz Komorowski,et al.  Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation , 2012 .

[7]  Gabriel Stoltz,et al.  Nonequilibrium Shear Viscosity Computations with Langevin Dynamics , 2011, Multiscale Model. Simul..

[8]  T. Komorowski,et al.  Diffusions with Divergence Free Drifts , 2012 .

[9]  Eitan Tadmor,et al.  A New Model for Self-organized Dynamics and Its Flocking Behavior , 2011, 1102.5575.

[10]  Jos'e Antonio Carrillo,et al.  Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.

[11]  Thierry Goudon Intégration : Intégrale de Lebesgue et introduction à l'analyse fonctionnelle , 2011 .

[12]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[13]  Francois Bolley Jos Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010 .

[14]  S. Sharma,et al.  The Fokker-Planck Equation , 2010 .

[15]  Massimo Fornasier,et al.  Particle, kinetic, and hydrodynamic models of swarming , 2010 .

[16]  Jos'e A. Carrillo,et al.  A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.

[17]  J. Carrillo,et al.  Double milling in self-propelled swarms from kinetic theory , 2009 .

[18]  A. Majda DIFFUSION LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM , 2009 .

[19]  E. Tadmor,et al.  From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.

[20]  G. A. Pavliotis,et al.  Diffusive Transport in Periodic Potentials: Underdamped Dynamics , 2008, 0805.0112.

[21]  Grigorios A. Pavliotis,et al.  Multiscale Methods: Averaging and Homogenization , 2008 .

[22]  Martin Hairer,et al.  From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.

[23]  G. Vial,et al.  Computations of the first eigenpairs for the Schrödinger operator with magnetic field , 2007 .

[24]  Nader Masmoudi,et al.  Diffusion Limit of a Semiconductor Boltzmann-Poisson System , 2007, SIAM J. Math. Anal..

[25]  A. Bertozzi,et al.  Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.

[26]  G. Pavliotis,et al.  Monte Carlo Studies of Effective Diffusivities for Inertial Particles , 2006 .

[27]  E. Vanden-Eijnden,et al.  Analysis of multiscale methods for stochastic differential equations , 2005 .

[28]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[29]  Thierry Goudon,et al.  HYDRODYNAMIC LIMIT FOR THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE , 2005 .

[30]  Martin Hairer,et al.  Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.

[31]  Mark Ainsworth,et al.  Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..

[32]  M. SIAMJ.,et al.  HOMOGENIZATION OF TRANSPORT EQUATIONS : WEAK MEAN FIELD APPROXIMATION , 2004 .

[33]  T. Goudon,et al.  Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation , 2003 .

[34]  François Golse,et al.  The mean-field limit for the dynamics of large particle systems , 2003 .

[35]  A. Veretennikov,et al.  © Institute of Mathematical Statistics, 2003 ON POISSON EQUATION AND DIFFUSION APPROXIMATION 2 1 , 2022 .

[36]  D. Sorensen Numerical methods for large eigenvalue problems , 2002, Acta Numerica.

[37]  A. Veretennikov,et al.  On the poisson equation and diffusion approximation 3 , 2001, math/0506596.

[38]  E. Lieb,et al.  Analysis, Second edition , 2001 .

[39]  Giuseppe Toscani,et al.  ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .

[40]  W. Rappel,et al.  Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Juan Soler,et al.  PARABOLIC LIMIT AND STABILITY OF THE VLASOV–FOKKER–PLANCK SYSTEM , 2000 .

[42]  François Golse,et al.  Kinetic equations and asympotic theory , 2000 .

[43]  Pierre Degond,et al.  Diffusion limit for non homogeneous and non-micro-reversible processes , 2000 .

[44]  Frédéric Poupaud,et al.  Parabolic Limit and Stability of the Vlasov-Poisson-Fokker-Planck system , 1998 .

[45]  Danny C. Sorensen,et al.  Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..

[46]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[47]  Israel Michael Sigal,et al.  Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .

[48]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[49]  Andrew J. Majda,et al.  The Effect of Mean Flows on Enhanced Diffusivity in Transport by Incompressible Periodic Velocity Fields , 1993 .

[50]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[51]  A. Sznitman Topics in propagation of chaos , 1991 .

[52]  C. Randall Truman,et al.  Effects of organized turbulence structures on the phase distortion in a coherent optical beam propagating through a turbulent shear flow , 1990 .

[53]  Pierre-Louis Lions,et al.  Regularity of the moments of the solution of a Transport Equation , 1988 .

[54]  P. Donnelly MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[55]  S. Varadhan,et al.  Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .

[56]  D. Robert Analyse semi-classique de l'effet tunnel , 1986 .

[57]  Shmuel Agmon,et al.  Bounds on exponential decay of eigenfunctions of Schrödinger operators , 1985 .

[58]  H. Risken The Fokker-Planck equation : methods of solution and applications , 1985 .

[59]  Barry Simon,et al.  Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .

[60]  Bernard Helffer,et al.  Multiple wells in the semi-classical limit I , 1984 .

[61]  Allen H. Boozer,et al.  Monte Carlo evaluation of transport coefficients , 1981 .

[62]  A. Vershik,et al.  Product of commuting spectral measures need not be countably additive , 1979 .

[63]  A. Bensoussan,et al.  Asymptotic analysis for periodic structures , 1979 .

[64]  Pierre Resibois,et al.  Classical kinetic theory of fluids , 1977 .

[65]  C. Chou The Vlasov equations , 1965 .