Efficient numerical calculation of drift and diffusion coefficients in the diffusion approximation of kinetic equations
暂无分享,去创建一个
G. Pavliotis | J. Carrillo | T. Goudon | V. Bonnaillie-Noel | José A. Carrillo | Virginie Bonnaillie-Noël | Thierry Goudon
[1] Kristian Kirsch,et al. Methods Of Modern Mathematical Physics , 2016 .
[2] F. Hérau,et al. Magnetic WKB Constructions , 2014, Archive for Rational Mechanics and Analysis.
[3] Peter R. Kramer,et al. Numerical methods for computing effective transport properties of flashing Brownian motors , 2013, J. Comput. Phys..
[4] Sébastien Motsch,et al. Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..
[5] Francesco Vecil,et al. A numerical study of attraction/repulsion collective behavior models: 3D particle analyses and 1D kinetic simulations , 2013 .
[6] Tomasz Komorowski,et al. Fluctuations in Markov Processes: Time Symmetry and Martingale Approximation , 2012 .
[7] Gabriel Stoltz,et al. Nonequilibrium Shear Viscosity Computations with Langevin Dynamics , 2011, Multiscale Model. Simul..
[8] T. Komorowski,et al. Diffusions with Divergence Free Drifts , 2012 .
[9] Eitan Tadmor,et al. A New Model for Self-organized Dynamics and Its Flocking Behavior , 2011, 1102.5575.
[10] Jos'e Antonio Carrillo,et al. Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010, 1009.5166.
[11] Thierry Goudon. Intégration : Intégrale de Lebesgue et introduction à l'analyse fonctionnelle , 2011 .
[12] Y. Saad. Numerical Methods for Large Eigenvalue Problems , 2011 .
[13] Francois Bolley Jos. Stochastic Mean-Field Limit: Non-Lipschitz Forces & Swarming , 2010 .
[14] S. Sharma,et al. The Fokker-Planck Equation , 2010 .
[15] Massimo Fornasier,et al. Particle, kinetic, and hydrodynamic models of swarming , 2010 .
[16] Jos'e A. Carrillo,et al. A well-posedness theory in measures for some kinetic models of collective motion , 2009, 0907.3901.
[17] J. Carrillo,et al. Double milling in self-propelled swarms from kinetic theory , 2009 .
[18] A. Majda. DIFFUSION LIMIT OF THE VLASOV-POISSON-FOKKER-PLANCK SYSTEM , 2009 .
[19] E. Tadmor,et al. From particle to kinetic and hydrodynamic descriptions of flocking , 2008, 0806.2182.
[20] G. A. Pavliotis,et al. Diffusive Transport in Periodic Potentials: Underdamped Dynamics , 2008, 0805.0112.
[21] Grigorios A. Pavliotis,et al. Multiscale Methods: Averaging and Homogenization , 2008 .
[22] Martin Hairer,et al. From Ballistic to Diffusive Behavior in Periodic Potentials , 2007, 0707.2352.
[23] G. Vial,et al. Computations of the first eigenpairs for the Schrödinger operator with magnetic field , 2007 .
[24] Nader Masmoudi,et al. Diffusion Limit of a Semiconductor Boltzmann-Poisson System , 2007, SIAM J. Math. Anal..
[25] A. Bertozzi,et al. Self-propelled particles with soft-core interactions: patterns, stability, and collapse. , 2006, Physical review letters.
[26] G. Pavliotis,et al. Monte Carlo Studies of Effective Diffusivities for Inertial Particles , 2006 .
[27] E. Vanden-Eijnden,et al. Analysis of multiscale methods for stochastic differential equations , 2005 .
[28] S. Ethier,et al. Markov Processes: Characterization and Convergence , 2005 .
[29] Thierry Goudon,et al. HYDRODYNAMIC LIMIT FOR THE VLASOV–POISSON–FOKKER–PLANCK SYSTEM: ANALYSIS OF THE TWO-DIMENSIONAL CASE , 2005 .
[30] Martin Hairer,et al. Periodic Homogenization for Hypoelliptic Diffusions , 2004, math-ph/0403003.
[31] Mark Ainsworth,et al. Discrete Dispersion Relation for hp-Version Finite Element Approximation at High Wave Number , 2004, SIAM J. Numer. Anal..
[32] M. SIAMJ.,et al. HOMOGENIZATION OF TRANSPORT EQUATIONS : WEAK MEAN FIELD APPROXIMATION , 2004 .
[33] T. Goudon,et al. Homogenization and Diffusion Asymptotics of the Linear Boltzmann Equation , 2003 .
[34] François Golse,et al. The mean-field limit for the dynamics of large particle systems , 2003 .
[35] A. Veretennikov,et al. © Institute of Mathematical Statistics, 2003 ON POISSON EQUATION AND DIFFUSION APPROXIMATION 2 1 , 2022 .
[36] D. Sorensen. Numerical methods for large eigenvalue problems , 2002, Acta Numerica.
[37] A. Veretennikov,et al. On the poisson equation and diffusion approximation 3 , 2001, math/0506596.
[38] E. Lieb,et al. Analysis, Second edition , 2001 .
[39] Giuseppe Toscani,et al. ON CONVEX SOBOLEV INEQUALITIES AND THE RATE OF CONVERGENCE TO EQUILIBRIUM FOR FOKKER-PLANCK TYPE EQUATIONS , 2001 .
[40] W. Rappel,et al. Self-organization in systems of self-propelled particles. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.
[41] Juan Soler,et al. PARABOLIC LIMIT AND STABILITY OF THE VLASOV–FOKKER–PLANCK SYSTEM , 2000 .
[42] François Golse,et al. Kinetic equations and asympotic theory , 2000 .
[43] Pierre Degond,et al. Diffusion limit for non homogeneous and non-micro-reversible processes , 2000 .
[44] Frédéric Poupaud,et al. Parabolic Limit and Stability of the Vlasov-Poisson-Fokker-Planck system , 1998 .
[45] Danny C. Sorensen,et al. Deflation Techniques for an Implicitly Restarted Arnoldi Iteration , 1996, SIAM J. Matrix Anal. Appl..
[46] Israel Michael Sigal,et al. Introduction to Spectral Theory , 1996 .
[47] Israel Michael Sigal,et al. Introduction to Spectral Theory: With Applications to Schrödinger Operators , 1995 .
[48] Vicsek,et al. Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.
[49] Andrew J. Majda,et al. The Effect of Mean Flows on Enhanced Diffusivity in Transport by Incompressible Periodic Velocity Fields , 1993 .
[50] H. Spohn. Large Scale Dynamics of Interacting Particles , 1991 .
[51] A. Sznitman. Topics in propagation of chaos , 1991 .
[52] C. Randall Truman,et al. Effects of organized turbulence structures on the phase distortion in a coherent optical beam propagating through a turbulent shear flow , 1990 .
[53] Pierre-Louis Lions,et al. Regularity of the moments of the solution of a Transport Equation , 1988 .
[54] P. Donnelly. MARKOV PROCESSES Characterization and Convergence (Wiley Series in Probability and Mathematical Statistics) , 1987 .
[55] S. Varadhan,et al. Central limit theorem for additive functionals of reversible Markov processes and applications to simple exclusions , 1986 .
[56] D. Robert. Analyse semi-classique de l'effet tunnel , 1986 .
[57] Shmuel Agmon,et al. Bounds on exponential decay of eigenfunctions of Schrödinger operators , 1985 .
[58] H. Risken. The Fokker-Planck equation : methods of solution and applications , 1985 .
[59] Barry Simon,et al. Semiclassical analysis of low lying eigenvalues, II. Tunneling* , 1984 .
[60] Bernard Helffer,et al. Multiple wells in the semi-classical limit I , 1984 .
[61] Allen H. Boozer,et al. Monte Carlo evaluation of transport coefficients , 1981 .
[62] A. Vershik,et al. Product of commuting spectral measures need not be countably additive , 1979 .
[63] A. Bensoussan,et al. Asymptotic analysis for periodic structures , 1979 .
[64] Pierre Resibois,et al. Classical kinetic theory of fluids , 1977 .
[65] C. Chou. The Vlasov equations , 1965 .