A semiparametric approach to simultaneous covariance estimation for bivariate sparse longitudinal data

Estimation of the covariance structure for irregular sparse longitudinal data has been studied by many authors in recent years but typically using fully parametric specifications. In addition, when data are collected from several groups over time, it is known that assuming the same or completely different covariance matrices over groups can lead to loss of efficiency and/or bias. Nonparametric approaches have been proposed for estimating the covariance matrix for regular univariate longitudinal data by sharing information across the groups under study. For the irregular case, with longitudinal measurements that are bivariate or multivariate, modeling becomes more difficult. In this article, to model bivariate sparse longitudinal data from several groups, we propose a flexible covariance structure via a novel matrix stick‐breaking process for the residual covariance structure and a Dirichlet process mixture of normals for the random effects. Simulation studies are performed to investigate the effectiveness of the proposed approach over more traditional approaches. We also analyze a subset of Framingham Heart Study data to examine how the blood pressure trajectories and covariance structures differ for the patients from different BMI groups (high, medium, and low) at baseline.

[1]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[2]  Jayaran Sethuramant A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[3]  J. Berger,et al.  Estimation of a Covariance Matrix Using the Reference Prior , 1994 .

[4]  M. Escobar,et al.  Bayesian Density Estimation and Inference Using Mixtures , 1995 .

[5]  A. R. Frisancho Physical Status: The Use and Interpretation of Anthropometry , 1996, The American Journal of Clinical Nutrition.

[6]  J. Taylor,et al.  A stochastic model for the analysis of bivariate longitudinal AIDS data. , 1997, Biometrics.

[7]  S. MacEachern,et al.  Estimating mixture of dirichlet process models , 1998 .

[8]  Andrew Gelman,et al.  General methods for monitoring convergence of iterative simulations , 1998 .

[9]  M. Pourahmadi Joint mean-covariance models with applications to longitudinal data: Unconstrained parameterisation , 1999 .

[10]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[11]  Daniel Commenges,et al.  Bivariate linear mixed models using SAS proc MIXED , 2002, Comput. Methods Programs Biomed..

[12]  Robert Wolk,et al.  Obesity, Sleep Apnea, and Hypertension , 2003, Hypertension.

[13]  Gilbert MacKenzie,et al.  On modelling mean‐covariance structures in longitudinal studies , 2003 .

[14]  M. Pourahmadi,et al.  Nonparametric estimation of large covariance matrices of longitudinal data , 2003 .

[15]  David Ruppert,et al.  Semiparametric Regression: Author Index , 2003 .

[16]  B. Ripley,et al.  Semiparametric Regression: Preface , 2003 .

[17]  M. Wand,et al.  Simple fitting of subject‐specific curves for longitudinal data , 2005, Statistics in medicine.

[18]  C. Robert,et al.  Deviance information criteria for missing data models , 2006 .

[19]  Peter W. Jones,et al.  Bivariate Longitudinal Model for Detecting Prescribing Change in Two Drugs Simultaneously with Correlated Errors , 2007 .

[20]  A. Rotnitzky,et al.  Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis by DANIELS, M. J. and HOGAN, J. W , 2009 .

[21]  L. Carin,et al.  The Matrix Stick-Breaking Process , 2008 .

[22]  Dipankar Bandyopadhyay,et al.  Linear mixed models for skew-normal/independent bivariate responses with an application to periodontal disease. , 2010, Statistics in medicine.

[23]  Pulak Ghosh,et al.  A SEMIPARAMETRIC BAYESIAN APPROACH TO MULTIVARIATE LONGITUDINAL DATA , 2010, Australian & New Zealand journal of statistics.

[24]  Kiranmoy Das,et al.  Genome-Wide Association Studies for Bivariate Sparse Longitudinal Data , 2011, Human Heredity.

[25]  Runze Li,et al.  A Bayesian Framework for Functional Mapping through Joint Modeling of Longitudinal and Time-to-Event Data , 2012, International journal of plant genomics.

[26]  Guifang Fu,et al.  Dynamic semiparametric Bayesian models for genetic mapping of complex trait with irregular longitudinal data , 2013, Statistics in medicine.

[27]  M. Daniels,et al.  A Nonparametric Prior for Simultaneous Covariance Estimation. , 2013, Biometrika.

[28]  Runze Li,et al.  A Bayesian semiparametric model for bivariate sparse longitudinal data , 2013, Statistics in medicine.