Discovering Boolean Gates in Slime Mould

Slime mould of Physarum polycephalum is a large cell exhibiting rich spatial non-linear electrical characteristics. We exploit the electrical properties of the slime mould to implement logic gates using a flexible hardware platform designed for investigating the electrical properties of a substrate (Mecobo). We apply arbitrary electrical signals to ‘configure’ the slime mould, i.e. change shape of its body and, measure the slime mould’s electrical response. We show that it is possible to find configurations that allow the Physarum to act as any 2-input Boolean gate. The occurrence frequency of the gates discovered in the slime was analysed and compared to complexity hierarchies of logical gates obtained in other unconventional materials. The search for gates was performed by both sweeping across configurations in the real material as well as training a neural network-based model and searching the gates therein using gradient descent.

[1]  S. Dreyfus The computational solution of optimal control problems with time lag , 1973 .

[2]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[3]  P. Werbos,et al.  Beyond Regression : "New Tools for Prediction and Analysis in the Behavioral Sciences , 1974 .

[4]  S. Hyakin,et al.  Neural Networks: A Comprehensive Foundation , 1994 .

[5]  S. Stephenson,et al.  Myxomycetes: A Handbook of Slime Molds , 1994 .

[6]  Adrian Thompson,et al.  Hardware evolution - automatic design of electronic circuits in reconfigurable hardware by artificial evolution , 1999, CPHC/BCS distinguished dissertations.

[7]  Paul J. Layzell,et al.  Analysis of unconventional evolved electronics , 1999, CACM.

[8]  Masashi Aono,et al.  Robust and emergent Physarum logical-computing. , 2004, Bio Systems.

[9]  Julian Francis Miller,et al.  Evolution in materio: a tone discriminator in liquid crystal , 2004, Proceedings of the 2004 Congress on Evolutionary Computation (IEEE Cat. No.04TH8753).

[10]  Klaus-Peter Zauner,et al.  Robot Control: From Silicon Circuitry to Cells , 2006, BioADIT.

[11]  Julian Francis Miller,et al.  Evolution In Materio: Evolving Logic Gates in Liquid Crystal , 2007, Int. J. Unconv. Comput..

[12]  L. Bull,et al.  Dynamic control and information processing in the Belousov-Zhabotinsky reaction using a coevolutionary algorithm. , 2008, The Journal of chemical physics.

[13]  Andrew Adamatzky,et al.  Are complex systems hard to evolve? , 2008, Complex..

[14]  Andrew Adamatzky,et al.  Physarum Machines: Computers from Slime Mould , 2010 .

[15]  Andrew Adamatzky,et al.  Slime mould logical gates: exploring ballistic approach , 2010, 1005.2301.

[16]  Jeff Jones,et al.  Routing Physarum with Electrical Flow/Current , 2011, Int. J. Nanotechnol. Mol. Comput..

[17]  Julian Francis Miller,et al.  Nascence Project: Nanoscale Engineering for Novel Computation Using Evolution , 2012, Int. J. Unconv. Comput..

[18]  Andrew Adamatzky,et al.  Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum , 2013, ArXiv.

[19]  Andrew Adamatzky,et al.  Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum Polycephalum , 2013, ArXiv.

[20]  Andrew Adamatzky,et al.  Slime mould tactile sensor , 2013, ArXiv.

[21]  Andrew Adamatzky,et al.  Slime Mould Memristors , 2013, 1306.3414.

[22]  Andrew Adamatzky,et al.  Physarum wires: Self-growing self-repairing smart wires made from slime mould , 2013, Biomedical Engineering Letters.

[23]  Andrew Adamatzky,et al.  Slime mould electronic oscillators , 2014, ArXiv.

[24]  Julian Francis Miller,et al.  Evolution-in-materio: evolving computation in materials , 2014, Evolutionary Intelligence.

[25]  Julian Francis Miller,et al.  Mecobo: A Hardware and Software Platform for In Materio Evolution , 2014, UCNC.

[26]  Victor Erokhin,et al.  Non-linear Bioelectronic Element: Schottky Effect and Electrochemistry , 2014, Int. J. Unconv. Comput..

[27]  Andrew Adamatzky,et al.  Slime Mould Logic Gates Based on Frequency Changes of Electrical Potential Oscillation , 2014, Biosyst..

[28]  Andrew Adamatzky,et al.  Towards a slime Mould-FPGA interface , 2015, Biomedical Engineering Letters.

[29]  T. Berzina,et al.  A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties , 2015, Chemical science.

[30]  Andrew Adamatzky,et al.  Slime mould foraging behaviour as optically coupled logical operations , 2015, Int. J. Gen. Syst..

[31]  Andrew Adamatzky,et al.  Practical circuits with Physarum Wires , 2015, ArXiv.

[32]  Andrew Adamatzky,et al.  Transfer function of protoplasmic tubes of Physarum polycephalum , 2015, Biosyst..

[33]  A. Adamatzky,et al.  Translating Slime Mould Responses: A Novel Way to Present Data to the Public , 2016 .

[34]  Andrew Adamatzky,et al.  Advances in Physarum Machines: Sensing and Computing with Slime Mould , 2016 .