On the use of auxiliary variables inMarkov chain

We study the slice sampler, a method of constructing a reversible Markov chain with a speciied invariant distribution. Given an independence Metropolis-Hastings algorithm it is always possible to construct a slice sampler that dominates it in the Peskun sense. This means that the resulting Markov chain produces estimates with a smaller asymptotic variance. Furthermore the slice sampler has a smaller second-largest eigenvalue than the corresponding independence Metropolis-Hastings algorithm. This ensures faster convergence to the distribution of interest. A suucient condition for uniform er-godicity of the slice sampler is given and an upper bound for the rate of convergence to stationarity is provided.

[1]  R. B. Potts Some generalized order-disorder transformations , 1952, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  P. Peskun,et al.  Optimum Monte-Carlo sampling using Markov chains , 1973 .

[3]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[4]  E. Nummelin General irreducible Markov chains and non-negative operators: Preface , 1984 .

[5]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[6]  A. Sokal,et al.  Generalization of the Fortuin-Kasteleyn-Swendsen-Wang representation and Monte Carlo algorithm. , 1988, Physical review. D, Particles and fields.

[7]  C. Geyer Markov Chain Monte Carlo Maximum Likelihood , 1991 .

[8]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[9]  C. Geyer,et al.  Constrained Monte Carlo Maximum Likelihood for Dependent Data , 1992 .

[10]  G. Parisi,et al.  Simulated tempering: a new Monte Carlo scheme , 1992, hep-lat/9205018.

[11]  P. Matthews A slowly mixing Markov chain with implications for Gibbs sampling , 1993 .

[12]  J. Besag,et al.  Spatial Statistics and Bayesian Computation , 1993 .

[13]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[14]  Jun S. Liu,et al.  Covariance Structure and Convergence Rate of the Gibbs Sampler with Various Scans , 1995 .

[15]  Bin Yu,et al.  Regeneration in Markov chain samplers , 1995 .

[16]  Geoffrey E. Hinton,et al.  Bayesian Learning for Neural Networks , 1995 .

[17]  R. Tweedie,et al.  Rates of convergence of the Hastings and Metropolis algorithms , 1996 .

[18]  Peter Green,et al.  Markov chain Monte Carlo in Practice , 1996 .

[19]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[20]  J. Wellner,et al.  Rates of Convergence , 1996 .

[21]  J. Propp,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996 .

[22]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[23]  James Allen Fill,et al.  An interruptible algorithm for perfect sampling via Markov chains , 1997, STOC '97.

[24]  Merrilee Hurn Difficulties in the use of auxiliary variables in Markov chain Monte Carlo methods , 1997, Stat. Comput..

[25]  Radford M. Neal Markov Chain Monte Carlo Methods Based on `Slicing' the Density Function , 1997 .

[26]  L. Tierney A note on Metropolis-Hastings kernels for general state spaces , 1998 .

[27]  D. Higdon Auxiliary Variable Methods for Markov Chain Monte Carlo with Applications , 1998 .

[28]  J. Rosenthal,et al.  On convergence rates of Gibbs samplers for uniform distributions , 1998 .

[29]  Antonietta Mira,et al.  Ordering, Slicing And Splitting Monte Carlo Markov Chains , 1998 .

[30]  P. Damlen,et al.  Gibbs sampling for Bayesian non‐conjugate and hierarchical models by using auxiliary variables , 1999 .

[31]  L Tierney,et al.  Some adaptive monte carlo methods for Bayesian inference. , 1999, Statistics in medicine.

[32]  G. S. Fishman An Analysis of Swendsen–Wang and Related Sampling Methods , 1999 .

[33]  Robin D. Morris Auxiliary Variables for Markov Random Fields with Higher Order Interactions , 1999, EMMCVPR.

[34]  Perfect Slice Samplers , 1999 .

[35]  Charles J. Geyer,et al.  Markov Chain Monte Carlo Lecture Notes , 2005 .