Leveraging constraints and biotelemetry data to pinpoint repetitively used spatial features.

Satellite telemetry devices collect valuable information concerning the sites visited by animals, including the location of central places like dens, nests, rookeries, or haul-outs. Existing methods for estimating the location of central places from telemetry data require user-specified thresholds and ignore common nuances like measurement error. We present a fully model-based approach for locating central places from telemetry data that accounts for multiple sources of uncertainty and uses all of the available locational data. Our general framework consists of an observation model to account for large telemetry measurement error and animal movement, and a highly flexible mixture model specified using a Dirichlet process to identify the location of central places. We also quantify temporal patterns in central place use by incorporating ancillary behavioral data into the model; however, our framework is also suitable when no such behavioral data exist. We apply the model to a simulated data set as proof of concept. We then illustrate our framework by analyzing an Argos satellite telemetry data set on harbor seals (Phoca vitulina) in the Gulf of Alaska, a species that exhibits fidelity to terrestrial haul-out sites.

[1]  Lancelot F. James,et al.  Gibbs Sampling Methods for Stick-Breaking Priors , 2001 .

[2]  Ian D. Jonsen,et al.  ROBUST STATE-SPACE MODELING OF ANIMAL MOVEMENT DATA , 2005 .

[3]  R. Towell,et al.  Bayesian Clustering of Animal Abundance Trends for Inference and Dimension Reduction , 2013 .

[4]  Daniel P. Costa,et al.  Accuracy of ARGOS Locations of Pinnipeds at-Sea Estimated Using Fastloc GPS , 2010, PloS one.

[5]  Toby A Patterson,et al.  Classifying movement behaviour in relation to environmental conditions using hidden Markov models. , 2009, The Journal of animal ecology.

[6]  Roland Langrock,et al.  Flexible and practical modeling of animal telemetry data: hidden Markov models and extensions. , 2012, Ecology.

[7]  Robert M. Dorazio,et al.  A Gibbs sampler for Bayesian analysis of site‐occupancy data , 2012 .

[8]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[9]  Mevin B. Hooten,et al.  Spatial occupancy models for large data sets , 2013 .

[10]  Mark Hebblewhite,et al.  Statistical Methods for Identifying Wolf Kill Sites Using Global Positioning System Locations , 2008 .

[11]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[12]  Samuel J. Gershman,et al.  A Tutorial on Bayesian Nonparametric Models , 2011, 1106.2697.

[13]  Li Zhang,et al.  Modeling Unobserved Sources of Heterogeneity in Animal Abundance Using a Dirichlet Process Prior , 2008, Biometrics.

[14]  Juan M. Morales,et al.  EXTRACTING MORE OUT OF RELOCATION DATA: BUILDING MOVEMENT MODELS AS MIXTURES OF RANDOM WALKS , 2004 .

[15]  Brett T. McClintock,et al.  A general discrete‐time modeling framework for animal movement using multistate random walks , 2012 .

[16]  L. Lowry,et al.  MOVEMENTS OF SATELLITE‐TAGGED SUBADULT AND ADULT HARBOR SEALS IN PRINCE WILLIAM SOUND, ALASKA , 2001 .

[17]  Nagahisa Mita,et al.  Using a Remote Technology in Conservation: Satellite Tracking White‐Naped Cranes in Russia and Asia , 2004 .

[18]  Mark D. Stevenson,et al.  Spatial targeting of infectious disease control: identifying multiple, unknown sources , 2014 .

[19]  Paul G. Blackwell,et al.  Bayesian inference for Markov processes with diffusion and discrete components , 2003 .

[20]  O. Liberg,et al.  Wolf Movement Patterns: a Key to Estimation of Kill Rate? , 2007 .

[21]  J. Sethuraman A CONSTRUCTIVE DEFINITION OF DIRICHLET PRIORS , 1991 .

[22]  Paul Beier,et al.  Use of land facets to design linkages for climate change. , 2012, Ecological applications : a publication of the Ecological Society of America.

[23]  Jacob S. Ivan,et al.  Hierarchical animal movement models for population‐level inference , 2016, 1606.09585.

[24]  J. Huelsenbeck,et al.  Inference of Population Structure Under a Dirichlet Process Model , 2007, Genetics.

[25]  Alan B. Franklin,et al.  Spotted owl roost and nest site selection in northwestern California , 1992 .

[26]  Y. Maho,et al.  The use of stopover sites by Black Storks (Ciconia nigra) migrating between West Europe and West Africa as revealed by satellite telemetry , 2010, Journal of Ornithology.

[27]  Charles R. Anderson,et al.  Estimating cougar predation rates from GPS location clusters , 2003 .

[28]  Joel S. Ruprecht,et al.  Homesite attendance based on sex, breeding status, and number of helpers in gray wolf packs , 2012 .

[29]  Jacob S. Ivan,et al.  A functional model for characterizing long‐distance movement behaviour , 2016 .

[30]  M. Holloran,et al.  SPATIAL DISTRIBUTION OF GREATER SAGE-GROUSE NESTS IN RELATIVELY CONTIGUOUS SAGEBRUSH HABITATS , 2005 .

[31]  J. V. Ver Hoef,et al.  Haul-Out Behavior of Harbor Seals (Phoca vitulina) in Hood Canal, Washington , 2012, PloS one.

[32]  R. Wolpert,et al.  Integrated likelihood methods for eliminating nuisance parameters , 1999 .

[33]  Brett T. McClintock,et al.  Modelling animal movement using the Argos satellite telemetry location error ellipse , 2015 .

[34]  Andrew O. Finley,et al.  spBayes for Large Univariate and Multivariate Point-Referenced Spatio-Temporal Data Models , 2013, 1310.8192.

[35]  Stanley M Tomkiewicz,et al.  Global positioning system and associated technologies in animal behaviour and ecological research , 2010, Philosophical Transactions of the Royal Society B: Biological Sciences.

[36]  Mevin B Hooten,et al.  Animal movement constraints improve resource selection inference in the presence of telemetry error. , 2015, Ecology.

[37]  Roland Kays,et al.  Moderating Argos location errors in animal tracking data , 2012 .

[38]  Mark S. Boyce,et al.  Evaluating Global Positioning System Telemetry Techniques for Estimating Cougar Predation Parameters , 2009 .

[39]  J. Hoef,et al.  Spatial modeling of haul-out site use by harbor seals in Cook Inlet, Alaska , 2007 .