The sudden death of entanglement in constructed Yang–Baxter systems

[1]  Gangcheng Wang,et al.  Entanglement and the Berry phase in a new Yang–Baxter system , 2009, 0903.3713.

[2]  T. Yu,et al.  Sudden Death of Entanglement , 2009, Science.

[3]  M. Ge,et al.  All Pure Two-Qudit Entangled States Can be Generated via a Universal Yang--Baxter Matrix Assisted by Local Unitary Transformations , 2008, 0809.2321.

[4]  Kang Xue,et al.  Berry phase and quantum criticality in Yang-Baxter systems , 2008, 0806.1369.

[5]  Kang Xue,et al.  Optical simulation of the Yang-Baxter equation , 2007, 0711.4703.

[6]  A. Rau,et al.  Hastening, delaying, or averting sudden death of quantum entanglement , 2007, 0711.0317.

[7]  Alexei Y. Arkhipov UNIVERSAL QUANTUM GATES , 2008 .

[8]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[9]  M. Ge,et al.  Linear optics implementation for Yang-Baxter Equation , 2007 .

[10]  Pierre Meystre Exploring the Quantum: Atoms, Cavities, and Photons , 2007 .

[11]  Agata Chceci'nska,et al.  Separability of entangled qutrits in noisy channels , 2007, 0705.2162.

[12]  Kang Xue,et al.  Braiding transformation, entanglement swapping, and Berry phase in entanglement space , 2007, 0704.0709.

[13]  G. Jaeger,et al.  Disentanglement and decoherence in two-spin and three-spin systems under dephasing , 2007, quant-ph/0703216.

[14]  M. Ge,et al.  GHZ States, Almost-Complex Structure and Yang–Baxter Equation , 2007, Quantum Inf. Process..

[15]  J. Eberly,et al.  Pairwise concurrence dynamics: a four-qubit model , 2007, quant-ph/0701111.

[16]  J. Raimond,et al.  Exploring the Quantum , 2006 .

[17]  Z. Ficek,et al.  Dark periods and revivals of entanglement in a two-qubit system , 2006, quant-ph/0604053.

[18]  P. Machnikowski,et al.  Complete disentanglement by partial pure dephasing , 2005, quant-ph/0507027.

[19]  Stig Stenholm,et al.  Quantum Approach to Informatics , 2005 .

[20]  Eric C. Rowell,et al.  Extraspecial 2-groups and images of braid group representations , 2005, math/0503435.

[21]  L. Kauffman,et al.  Yang–Baxterizations, Universal Quantum Gates and Hamiltonians , 2005, Quantum Inf. Process..

[22]  L. Kauffman,et al.  Universal Quantum Gate, Yang-Baxterization and Hamiltonian , 2004, quant-ph/0412095.

[23]  T. Yu,et al.  Finite-time disentanglement via spontaneous emission. , 2004, Physical review letters.

[24]  L. Kauffman,et al.  Braiding operators are universal quantum gates , 2004, quant-ph/0401090.

[25]  T. Yu,et al.  Qubit disentanglement and decoherence via dephasing , 2003, quant-ph/0305078.

[26]  A. Kitaev,et al.  Fault tolerant quantum computation by anyons , 1997, quant-ph/9707021.

[27]  Goong Chen,et al.  Mathematics of Quantum Computation , 2002 .

[28]  F. Bais,et al.  Quantum groups and non-Abelian braiding in quantum Hall systems , 2001, cond-mat/0104035.

[29]  Andrew G. White,et al.  On the measurement of qubits , 2001, quant-ph/0103121.

[30]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[31]  M. Ge,et al.  EXPLICIT TRIGONOMETRIC YANG-BAXTERIZATION , 1991 .

[32]  A. Zeilinger Complementarity in neutron interferometry , 1986 .

[33]  V. Drinfeld Hopf algebra and Yang-Baxter equation , 1985 .

[34]  Vladimir Drinfeld,et al.  Hopf algebras and the quantum Yang-Baxter equation , 1985 .

[35]  R. Baxter Exactly solved models in statistical mechanics , 1982 .

[36]  A. Zeilinger,et al.  Phase-shift and spin-rotation phenomena in neutron interferometry , 1976 .

[37]  R. Baxter Partition function of the eight vertex lattice model , 1972 .

[38]  Elliott H Lieb,et al.  Relations between the ‘percolation’ and ‘colouring’ problem and other graph-theoretical problems associated with regular planar lattices: some exact results for the ‘percolation’ problem , 1971, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  C. Yang,et al.  S MATRIX FOR THE ONE-DIMENSIONAL N-BODY PROBLEM WITH REPULSIVE OR ATTRACTIVE delta-FUNCTION INTERACTION. , 1968 .

[40]  C. Yang Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction , 1967 .