The diversity of Type II supernova versus the similarity in their progenitors

The authors acknowledge the ASASSN, La Silla Quest, and LOSS surveys for discovering new SNe that made this study possible. This material is based upon work supported by the National Science Foundation (NSF) under Grant No. 1313484. MDS gratefully acknowledges generous support provided by the Danish Agency for Science and Technology and Innovation realized through a Sapere Aude Level 2 grant. MF is supported by the European Union FP7 programme through ERC grant number 320360. SJS acknowledges funding from the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement No. [291222] and STFC grants ST/I001123/1 and ST/L000709/1. AVF's group at UC Berkeley is grateful for financial assistance from NSF grant AST-1211916, the TABASGO Foundation, Gary and Cynthia Bengier, and the Christopher R. Redlich Fund. This work was supported by the NSF under grants PHY-1125915 and AST-1109174. M.S. acknowledges support from EU/FP7-ERC grant no [615929]. This paper is based on observations made with the Swift, LCOGT, Gemini, and Keck Observatories; we thank their respective staffs for excellent assistance. The W. M. Keck Observatory is operated as a scientific partnership among the California Institute of Technology, the University of California, and NASA; the observatory was made possible by the generous financial support of the W. M. Keck Foundation. Based on observations collected at the European Organization for Astronomical Research in the Southern hemisphere, Chile as part of PESSTO, (the Public ESO Spectroscopic Survey for Transient Objects Survey) ESO program ID 188.D-3003.

[1]  M. Pruzhinskaya,et al.  On the nature of rapidly fading Type II supernovae , 2015, 1510.01656.

[2]  M. Graham,et al.  EXTENSIVE SPECTROSCOPY AND PHOTOMETRY OF THE TYPE IIP SUPERNOVA 2013ej , 2015, 1509.01721.

[3]  M. Sullivan,et al.  TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS , 2015, 1512.00733.

[4]  D. Poznanski,et al.  THE IMPORTANCE OF 56Ni IN SHAPING THE LIGHT CURVES OF TYPE II SUPERNOVAE , 2015, 1506.07185.

[5]  C. Ott,et al.  LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC) , 2015, 1505.06746.

[6]  G. Pignata,et al.  The rise-time of Type II supernovae , 2015, 1505.02988.

[7]  S. Smartt Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.

[8]  M. L. Pumo,et al.  SN 2009ib: A Type II-P supernova with an unusually long plateau , 2015, 1504.02404.

[9]  M. L. Pumo,et al.  SN 2013ab : A normal type IIP supernova in NGC 5669 , 2015, 1504.00838.

[10]  J. Maund,et al.  Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? , 2015 .

[11]  R. Kotak,et al.  A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw , 2015, 1502.06034.

[12]  J. Prieto,et al.  ON THE INTRINSIC DIVERSITY OF TYPE II-PLATEAU SUPERNOVAE , 2015, 1501.06573.

[13]  Las Cumbres Observatory Global Telescope Network,et al.  Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop , 2015, 1501.06491.

[14]  D. Poznanski,et al.  Bright but slow – Type II supernovae from OGLE-IV – implications for magnitude-limited surveys , 2015, 1501.03452.

[15]  E. Ofek,et al.  The rising light curves of Type Ia supernovae , 2014, 1411.1064.

[16]  M. Sullivan,et al.  PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.

[17]  K. Maguire,et al.  Supersolar Ni/Fe production in the Type IIP SN 2012ec , 2014, 1410.8394.

[18]  M. Sullivan,et al.  SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase , 2014, 1410.8393.

[19]  Tim Jenness,et al.  ORAC-DR: A generic data reduction pipeline infrastructure , 2014, Astron. Comput..

[20]  Chris L. Fryer,et al.  THE EFFECTS ON SUPERNOVA SHOCK BREAKOUT AND SWIFT LIGHT CURVES DUE TO THE MASS OF THE HYDROGEN-RICH ENVELOPE , 2014, 1401.4449.

[21]  R. Foley,et al.  A sample of Type II-L supernovae , 2014, 1409.1536.

[22]  S. Smartt,et al.  Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh , 2014, 1408.0732.

[23]  P. Brown,et al.  SOUSA: the Swift Optical/Ultraviolet Supernova Archive , 2014, 1407.3808.

[24]  S. Gezari,et al.  TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.

[25]  U. Munari,et al.  THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING , 2014, 1404.1294.

[26]  R. Foley,et al.  Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.

[27]  Kevin Krisciunas,et al.  CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.

[28]  Stefano Benetti,et al.  Asiago Supernova classification program: blowing out the first two hundred candles , 2014, 1403.7233.

[29]  Australian National University,et al.  Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors , 2014, 1401.5426.

[30]  Subhash Bose,et al.  DISTANCE DETERMINATION TO EIGHT GALAXIES USING EXPANDING PHOTOSPHERE METHOD , 2014, 1401.5115.

[31]  M. L. Pumo,et al.  SN 2009N: linking normal and subluminous Type II-P Sne , 2013, 1311.2525.

[32]  R. Kotak,et al.  The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines , 2013, 1311.2031.

[33]  S. Smartt,et al.  The first month of evolution of the slow-rising Type IIP SN 2013ej in M74 , 2013, 1309.4269.

[34]  R. Kotak,et al.  On the progenitor of the Type IIP SN 2013ej in M74. , 2013, 1309.4268.

[35]  P. Brown,et al.  BOLOMETRIC AND UV LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE , 2013, 1303.1190.

[36]  FIRE classification of LSQ13dpa, a possible young type II supernova , 2013 .

[37]  A. Pastorello,et al.  COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.

[38]  J. Prieto,et al.  THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.

[39]  Charles Baltay,et al.  The La Silla-QUEST Low Redshift Supernova Survey , 2013 .

[40]  M. L. Pumo,et al.  Comparison of progenitor mass estimates for the type IIP SN 2012A , 2013, 1305.5789.

[41]  E. Livne,et al.  Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.

[42]  B. Kumar,et al.  Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em , 2013, 1305.3152.

[43]  D. Poznanski An emerging coherent picture of red supergiant supernova explosions , 2013, 1304.4967.

[44]  S. E. Persson,et al.  Carnegie Supernova Project: Observations of Type IIn supernovae ⋆ , 2013, 1304.3038.

[45]  R. Itoh,et al.  SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION , 2013, 1303.1565.

[46]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[47]  Chris L. Fryer,et al.  THE LONG-LIVED UV “PLATEAU” OF SN 2012aw , 2012, 1210.5496.

[48]  M. L. Pumo,et al.  Moderately luminous Type II supernovae , 2012, 1210.1411.

[49]  K. Maguire,et al.  The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling , 2012, 1208.2183.

[50]  D. Poznanski,et al.  THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95 , 2012, 1207.2811.

[51]  J. Prochaska,et al.  An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.

[52]  D. Fox,et al.  CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.

[53]  T. N. Sokolova,et al.  The bright Type IIP SN 2009bw, showing signs of interaction , 2012, 1202.0659.

[54]  K. Maguire,et al.  Constraining the physical properties of Type II-Plateau supernovae using nebular phase spectra , 2011, 1112.0035.

[55]  J. Vinkó,et al.  Measuring expansion velocities in Type II-P supernovae , 2011, 1109.5873.

[56]  Ice,et al.  THE MASSIVE PROGENITOR OF THE POSSIBLE TYPE II-LINEAR SUPERNOVA 2009hd IN MESSIER 66 , 2011, 1108.2645.

[57]  B. Kumar,et al.  SN 2008in—BRIDGING THE GAP BETWEEN NORMAL AND FAINT SUPERNOVAE OF TYPE IIP , 2011, 1106.2390.

[58]  Richard Walters,et al.  REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.

[59]  C. Fransson,et al.  The 44Ti-powered spectrum of SN 1987A , 2011, 1103.3653.

[60]  M. L. Pumo,et al.  The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase , 2011, 1102.5468.

[61]  J. Fabbri,et al.  PHOTOMETRIC AND SPECTROSCOPIC EVOLUTION OF THE IIP SN 2007it TO DAY 944 , 2011, 1102.2431.

[62]  R. Chevalier,et al.  SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.

[63]  Eli Waxman,et al.  THE EARLY UV/OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1002.3414.

[64]  Douglas P. Finkbeiner,et al.  MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.

[65]  K. Maguire,et al.  SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.

[66]  D. Berk,et al.  THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET , 2010, 1007.4842.

[67]  Mohan Ganeshalingam,et al.  Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.

[68]  R. Kotak,et al.  The Type Ic SN 2007gr: a census of the ejecta from late-time optical–infrared spectra , 2010, 1006.4259.

[69]  Robert P. Kirshner,et al.  THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE , 2010, 1004.2534.

[70]  E. Nakar,et al.  EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.

[71]  M. J. Page,et al.  Further calibration of the Swift ultraviolet/optical telescope , 2010, 1004.2448.

[72]  S. Smartt,et al.  ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr , 2009, 0912.2071.

[73]  Spitzer Science Center,et al.  Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.

[74]  J. Bloom,et al.  THE MASSIVE PROGENITOR OF THE TYPE II-LINEAR SUPERNOVA 2009kr , 2009, 0912.2880.

[75]  S. E. Woosley,et al.  TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.

[76]  Stephen J. Smartt,et al.  Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.

[77]  Oxford,et al.  Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.

[78]  A. Pastorello,et al.  Nebular emission-line profiles of Type Ib/c supernovae - Probing the ejecta asphericity , 2009, 0904.4632.

[79]  John A. Nousek,et al.  ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .

[80]  S. Smartt,et al.  SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.

[81]  R. Foley,et al.  DISTANCE DETERMINATION TO 12 TYPE II SUPERNOVAE USING THE EXPANDING PHOTOSPHERE METHOD , 2008, 0903.1460.

[82]  Adam A. Miller,et al.  IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE , 2008, 0810.4923.

[83]  Copenhagen,et al.  The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .

[84]  N. Morrell,et al.  DO THE PHOTOMETRIC COLORS OF TYPE II-P SUPERNOVAE ALLOW ACCURATE DETERMINATION OF HOST GALAXY EXTINCTION? , 2008, 0809.2591.

[85]  Robert P. Kirshner,et al.  Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.

[86]  E. O. Ofek,et al.  The Broad-lined Type Ic SN 2003jd , 2007, 0710.5173.

[87]  R. Foley,et al.  The Aspherical Properties of the Energetic Type Ic SN 2002ap as Inferred from Its Nebular Spectra , 2007, 0708.0966.

[88]  Robert M. Quimby,et al.  SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.

[89]  E. Waxman,et al.  GRB 060218: A Relativistic Supernova Shock Breakout , 2007, astro-ph/0702450.

[90]  S. Woosley,et al.  Nucleosynthesis and remnants in massive stars of solar metallicity , 2007, astro-ph/0702176.

[91]  J. Vinkó,et al.  Distance estimate and progenitor characteristics of SN 2005cs in M51 , 2006, astro-ph/0608430.

[92]  M. Principe,et al.  SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau , 2006, astro-ph/0605700.

[93]  Xu Zhou,et al.  Determination of the Hubble Constant, the Intrinsic Scatter of Luminosities of Type Ia Supernovae, and Evidence for Nonstandard Dust in Other Galaxies , 2006, astro-ph/0603392.

[94]  John T. Rayner,et al.  Optical and infrared observations of the Type IIP SN 2002hh from days 3 to 397 , 2006 .

[95]  S. Smartt,et al.  The progenitor of SN 2005cs in the Whirlpool Galaxy , 2005, astro-ph/0507502.

[96]  Philip Massey,et al.  The effective temperature scale of galactic red supergiants : Cool, but not as cool as we thought , 2005 .

[97]  M. Turatto,et al.  Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.

[98]  Peter W. A. Roming,et al.  The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.

[99]  N. Tanvir,et al.  The extra-galactic Cepheid distance scale from LMC and Galactic period-luminosity relations , 2003, astro-ph/0309235.

[100]  Nial R. Tanvir,et al.  The Cepheid Distance to NGC 1637: A Direct Test of the Expanding Photosphere Method Distance to SN 1999em , 2003, astro-ph/0305259.

[101]  M. Turatto,et al.  Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .

[102]  M. Hamuy Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.

[103]  S. Jha,et al.  A Study of the Type II-Plateau Supernova 1999gi and the Distance to its Host Galaxy, NGC 3184 , 2002, astro-ph/0207601.

[104]  R. Chornock,et al.  The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.

[105]  A. Filippenko,et al.  The Lick Observatory Supernova Search , 1999, astro-ph/9912336.

[106]  H. Ford,et al.  Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.

[107]  Alexei V. Filippenko,et al.  Optical spectra of supernovae , 1997 .

[108]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[109]  Harland W. Epps,et al.  THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .

[110]  P. Harding,et al.  The Extragalactic Distance Scale Key Project. IV. The Discovery of Cepheids and a New Distance to M100 Using the Hubble Space Telescope , 1996 .

[111]  D. V. Popov An analytical model for the plateau stage of type II supernovae , 1993 .

[112]  R. Kirshner,et al.  Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale , 1992, astro-ph/9204004.

[113]  R. Chevalier,et al.  Late emission from supernovae - A window on stellar nucleosynthesis , 1989 .

[114]  N. Suntzeff,et al.  SN 1987A in the LMC - UBVRI photometry at Cerro Tololo , 1988 .

[115]  P. Stetson DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .

[116]  A. V. Filippenko,et al.  THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .

[117]  R. Buta,et al.  THE BRIGHT SN 1979 C IN M 100. , 1981 .

[118]  R. Chevalier The hydrodynamics of type II supernovae. , 1976 .

[119]  D. Arnett,et al.  A Theoretical Model for Type II Supernovae , 1973 .