The diversity of Type II supernova versus the similarity in their progenitors
暂无分享,去创建一个
Davis | S. Smartt | M. Sullivan | P. Brown | U. California | C. McCully | M. Stritzinger | I. Arcavi | G. Hosseinzadeh | D. Howell | S. Valenti | M. Graham | A. Piro | D. Sand | C. Baltay | D. Rabinowitz | A. Filippenko | S. Benetti | L. Bildsten | A. Pastorello | M. Stritzinger | G. Terreran | M. Fraser | A. Jerkstrand | F. L. D. O. Physics | D. Rabinowitz | P. Brown | Fang Yuan | A. Filippenko | M. Sullivan | Mark Sullivan | Morgan Fraser | D. Sand | S. Benetti | M. L. Graham | Peter J. Brown | Lars Bildsten
[1] M. Pruzhinskaya,et al. On the nature of rapidly fading Type II supernovae , 2015, 1510.01656.
[2] M. Graham,et al. EXTENSIVE SPECTROSCOPY AND PHOTOMETRY OF THE TYPE IIP SUPERNOVA 2013ej , 2015, 1509.01721.
[3] M. Sullivan,et al. TYPE II SUPERNOVA ENERGETICS AND COMPARISON OF LIGHT CURVES TO SHOCK-COOLING MODELS , 2015, 1512.00733.
[4] D. Poznanski,et al. THE IMPORTANCE OF 56Ni IN SHAPING THE LIGHT CURVES OF TYPE II SUPERNOVAE , 2015, 1506.07185.
[5] C. Ott,et al. LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE WITH SUBSTANTIAL MASS LOSS USING THE NEW OPEN-SOURCE SUPERNOVA EXPLOSION CODE (SNEC) , 2015, 1505.06746.
[6] G. Pignata,et al. The rise-time of Type II supernovae , 2015, 1505.02988.
[7] S. Smartt. Observational Constraints on the Progenitors of Core-Collapse Supernovae: The Case for Missing High-Mass Stars , 2015, Publications of the Astronomical Society of Australia.
[8] M. L. Pumo,et al. SN 2009ib: A Type II-P supernova with an unusually long plateau , 2015, 1504.02404.
[9] M. L. Pumo,et al. SN 2013ab : A normal type IIP supernova in NGC 5669 , 2015, 1504.00838.
[10] J. Maund,et al. Whatever happened to the progenitors of supernovae 2008cn, 2009kr and 2009md? , 2015 .
[11] R. Kotak,et al. A comparative study of Type II-P and II-L supernova rise times as exemplified by the case of LSQ13cuw , 2015, 1502.06034.
[12] J. Prieto,et al. ON THE INTRINSIC DIVERSITY OF TYPE II-PLATEAU SUPERNOVAE , 2015, 1501.06573.
[13] Las Cumbres Observatory Global Telescope Network,et al. Supernova 2013by: a Type IIL supernova with a IIP-like light-curve drop , 2015, 1501.06491.
[14] D. Poznanski,et al. Bright but slow – Type II supernovae from OGLE-IV – implications for magnitude-limited surveys , 2015, 1501.03452.
[15] E. Ofek,et al. The rising light curves of Type Ia supernovae , 2014, 1411.1064.
[16] M. Sullivan,et al. PESSTO: survey description and products from the first data release by the Public ESO Spectroscopic Survey of Transient Objects , 2014, 1411.0299.
[17] K. Maguire,et al. Supersolar Ni/Fe production in the Type IIP SN 2012ec , 2014, 1410.8394.
[18] M. Sullivan,et al. SN 2012ec: mass of the progenitor from PESSTO follow-up of the photospheric phase , 2014, 1410.8393.
[19] Tim Jenness,et al. ORAC-DR: A generic data reduction pipeline infrastructure , 2014, Astron. Comput..
[20] Chris L. Fryer,et al. THE EFFECTS ON SUPERNOVA SHOCK BREAKOUT AND SWIFT LIGHT CURVES DUE TO THE MASS OF THE HYDROGEN-RICH ENVELOPE , 2014, 1401.4449.
[21] R. Foley,et al. A sample of Type II-L supernovae , 2014, 1409.1536.
[22] S. Smartt,et al. Late-time spectral line formation in Type IIb supernovae, with application to SN 1993J, SN 2008ax, and SN 2011dh , 2014, 1408.0732.
[23] P. Brown,et al. SOUSA: the Swift Optical/Ultraviolet Supernova Archive , 2014, 1407.3808.
[24] S. Gezari,et al. TOWARD CHARACTERIZATION OF THE TYPE IIP SUPERNOVA PROGENITOR POPULATION: A STATISTICAL SAMPLE OF LIGHT CURVES FROM Pan-STARRS1 , 2014, 1404.2004.
[25] U. Munari,et al. THE TYPE IIP SUPERNOVA 2012aw IN M95: HYDRODYNAMICAL MODELING OF THE PHOTOSPHERIC PHASE FROM ACCURATE SPECTROPHOTOMETRIC MONITORING , 2014, 1404.1294.
[26] R. Foley,et al. Photometric and spectroscopic properties of Type II-P supernovae , 2014, 1404.0378.
[27] Kevin Krisciunas,et al. CHARACTERIZING THE V-BAND LIGHT-CURVES OF HYDROGEN-RICH TYPE II SUPERNOVAE , 2014, 1403.7091.
[28] Stefano Benetti,et al. Asiago Supernova classification program: blowing out the first two hundred candles , 2014, 1403.7233.
[29] Australian National University,et al. Low luminosity Type II supernovae - II. Pointing towards moderate mass precursors , 2014, 1401.5426.
[30] Subhash Bose,et al. DISTANCE DETERMINATION TO EIGHT GALAXIES USING EXPANDING PHOTOSPHERE METHOD , 2014, 1401.5115.
[31] M. L. Pumo,et al. SN 2009N: linking normal and subluminous Type II-P Sne , 2013, 1311.2525.
[32] R. Kotak,et al. The nebular spectra of SN 2012aw and constraints on stellar nucleosynthesis from oxygen emission lines , 2013, 1311.2031.
[33] S. Smartt,et al. The first month of evolution of the slow-rising Type IIP SN 2013ej in M74 , 2013, 1309.4269.
[34] R. Kotak,et al. On the progenitor of the Type IIP SN 2013ej in M74. , 2013, 1309.4268.
[35] P. Brown,et al. BOLOMETRIC AND UV LIGHT CURVES OF CORE-COLLAPSE SUPERNOVAE , 2013, 1303.1190.
[36] FIRE classification of LSQ13dpa, a possible young type II supernova , 2013 .
[37] A. Pastorello,et al. COSMOLOGICAL CONSTRAINTS FROM MEASUREMENTS OF TYPE Ia SUPERNOVAE DISCOVERED DURING THE FIRST 1.5 yr OF THE Pan-STARRS1 SURVEY , 2013, 1310.3828.
[38] J. Prieto,et al. THE MAN BEHIND THE CURTAIN: X-RAYS DRIVE THE UV THROUGH NIR VARIABILITY IN THE 2013 ACTIVE GALACTIC NUCLEUS OUTBURST IN NGC 2617 , 2013, 1310.2241.
[39] Charles Baltay,et al. The La Silla-QUEST Low Redshift Supernova Survey , 2013 .
[40] M. L. Pumo,et al. Comparison of progenitor mass estimates for the type IIP SN 2012A , 2013, 1305.5789.
[41] E. Livne,et al. Type II-Plateau supernova radiation: dependences on progenitor and explosion properties , 2013, 1305.3386.
[42] B. Kumar,et al. Supernova 2012aw - a high-energy clone of archetypal type IIP SN 1999em , 2013, 1305.3152.
[43] D. Poznanski. An emerging coherent picture of red supergiant supernova explosions , 2013, 1304.4967.
[44] S. E. Persson,et al. Carnegie Supernova Project: Observations of Type IIn supernovae ⋆ , 2013, 1304.3038.
[45] R. Itoh,et al. SN 2009js AT THE CROSSROADS BETWEEN NORMAL AND SUBLUMINOUS TYPE IIP SUPERNOVAE: OPTICAL AND MID-INFRARED EVOLUTION , 2013, 1303.1565.
[46] Daniel Foreman-Mackey,et al. emcee: The MCMC Hammer , 2012, 1202.3665.
[47] Chris L. Fryer,et al. THE LONG-LIVED UV “PLATEAU” OF SN 2012aw , 2012, 1210.5496.
[48] M. L. Pumo,et al. Moderately luminous Type II supernovae , 2012, 1210.1411.
[49] K. Maguire,et al. The progenitor mass of the Type IIP supernova SN 2004et from late-time spectral modeling , 2012, 1208.2183.
[50] D. Poznanski,et al. THE RED SUPERGIANT PROGENITOR OF SUPERNOVA 2012aw (PTF12bvh) IN MESSIER 95 , 2012, 1207.2811.
[51] J. Prochaska,et al. An empirical relation between sodium absorption and dust extinction , 2012, 1206.6107.
[52] D. Fox,et al. CALTECH CORE-COLLAPSE PROJECT (CCCP) OBSERVATIONS OF TYPE II SUPERNOVAE: EVIDENCE FOR THREE DISTINCT PHOTOMETRIC SUBTYPES , 2012, 1206.2029.
[53] T. N. Sokolova,et al. The bright Type IIP SN 2009bw, showing signs of interaction , 2012, 1202.0659.
[54] K. Maguire,et al. Constraining the physical properties of Type II-Plateau supernovae using nebular phase spectra , 2011, 1112.0035.
[55] J. Vinkó,et al. Measuring expansion velocities in Type II-P supernovae , 2011, 1109.5873.
[56] Ice,et al. THE MASSIVE PROGENITOR OF THE POSSIBLE TYPE II-LINEAR SUPERNOVA 2009hd IN MESSIER 66 , 2011, 1108.2645.
[57] B. Kumar,et al. SN 2008in—BRIDGING THE GAP BETWEEN NORMAL AND FAINT SUPERNOVAE OF TYPE IIP , 2011, 1106.2390.
[58] Richard Walters,et al. REAL-TIME DETECTION AND RAPID MULTIWAVELENGTH FOLLOW-UP OBSERVATIONS OF A HIGHLY SUBLUMINOUS TYPE II-P SUPERNOVA FROM THE PALOMAR TRANSIENT FACTORY SURVEY , 2011, 1106.0400.
[59] C. Fransson,et al. The 44Ti-powered spectrum of SN 1987A , 2011, 1103.3653.
[60] M. L. Pumo,et al. The Type IIP SN 2007od in UGC 12846: from a bright maximum to dust formation in the nebular phase , 2011, 1102.5468.
[61] J. Fabbri,et al. PHOTOMETRIC AND SPECTROSCOPIC EVOLUTION OF THE IIP SN 2007it TO DAY 944 , 2011, 1102.2431.
[62] R. Chevalier,et al. SHOCK BREAKOUT IN DENSE MASS LOSS: LUMINOUS SUPERNOVAE , 2011, 1101.1111.
[63] Eli Waxman,et al. THE EARLY UV/OPTICAL EMISSION FROM CORE-COLLAPSE SUPERNOVAE , 2010, 1002.3414.
[64] Douglas P. Finkbeiner,et al. MEASURING REDDENING WITH SLOAN DIGITAL SKY SURVEY STELLAR SPECTRA AND RECALIBRATING SFD , 2010, 1012.4804.
[65] K. Maguire,et al. SN 2009md: another faint supernova from a low-mass progenitor , 2010, 1011.6558.
[66] D. Berk,et al. THE ABSOLUTE MAGNITUDES OF TYPE Ia SUPERNOVAE IN THE ULTRAVIOLET , 2010, 1007.4842.
[67] Mohan Ganeshalingam,et al. Nearby Supernova Rates from the Lick Observatory Supernova Search. II. The Observed Luminosity Functions and Fractions of Supernovae in a Complete Sample , 2010, 1006.4612.
[68] R. Kotak,et al. The Type Ic SN 2007gr: a census of the ejecta from late-time optical–infrared spectra , 2010, 1006.4259.
[69] Robert P. Kirshner,et al. THE STANDARDIZED CANDLE METHOD FOR TYPE II PLATEAU SUPERNOVAE , 2010, 1004.2534.
[70] E. Nakar,et al. EARLY SUPERNOVAE LIGHT CURVES FOLLOWING THE SHOCK BREAKOUT , 2010, 1004.2496.
[71] M. J. Page,et al. Further calibration of the Swift ultraviolet/optical telescope , 2010, 1004.2448.
[72] S. Smartt,et al. ON THE PROGENITOR AND EARLY EVOLUTION OF THE TYPE II SUPERNOVA 2009kr , 2009, 0912.2071.
[73] Spitzer Science Center,et al. Optical and near infrared coverage of SN 2004et: physical parameters and comparison with other type IIP supernovae , 2009, 0912.3111.
[74] J. Bloom,et al. THE MASSIVE PROGENITOR OF THE TYPE II-LINEAR SUPERNOVA 2009kr , 2009, 0912.2880.
[75] S. E. Woosley,et al. TYPE II SUPERNOVAE: MODEL LIGHT CURVES AND STANDARD CANDLE RELATIONSHIPS , 2009, 0910.1590.
[76] Stephen J. Smartt,et al. Progenitors of Core-Collapse Supernovae , 2009, 0908.0700.
[77] Oxford,et al. Exploring the Optical Transient Sky with the Palomar Transient Factory , 2009, 0906.5355.
[78] A. Pastorello,et al. Nebular emission-line profiles of Type Ib/c supernovae - Probing the ejecta asphericity , 2009, 0904.4632.
[79] John A. Nousek,et al. ULTRAVIOLET LIGHT CURVES OF SUPERNOVAE WITH THE SWIFT ULTRAVIOLET/OPTICAL TELESCOPE , 2009 .
[80] S. Smartt,et al. SN 2005cs in M51 – II. Complete evolution in the optical and the near-infrared , 2009, 0901.2075.
[81] R. Foley,et al. DISTANCE DETERMINATION TO 12 TYPE II SUPERNOVAE USING THE EXPANDING PHOTOSPHERE METHOD , 2008, 0903.1460.
[82] Adam A. Miller,et al. IMPROVED STANDARDIZATION OF TYPE II-P SUPERNOVAE: APPLICATION TO AN EXPANDED SAMPLE , 2008, 0810.4923.
[83] Copenhagen,et al. The death of massive stars – I. Observational constraints on the progenitors of Type II-P supernovae , 2009 .
[84] N. Morrell,et al. DO THE PHOTOMETRIC COLORS OF TYPE II-P SUPERNOVAE ALLOW ACCURATE DETERMINATION OF HOST GALAXY EXTINCTION? , 2008, 0809.2591.
[85] Robert P. Kirshner,et al. Using Quantitative Spectroscopic Analysis to Determine the Properties and Distances of Type II Plateau Supernovae: SN 2005cs and SN 2006bp , 2007, 0711.1815.
[86] E. O. Ofek,et al. The Broad-lined Type Ic SN 2003jd , 2007, 0710.5173.
[87] R. Foley,et al. The Aspherical Properties of the Energetic Type Ic SN 2002ap as Inferred from Its Nebular Spectra , 2007, 0708.0966.
[88] Robert M. Quimby,et al. SN 2006bp: Probing the Shock Breakout of a Type II-P Supernova , 2007, 0705.3478.
[89] E. Waxman,et al. GRB 060218: A Relativistic Supernova Shock Breakout , 2007, astro-ph/0702450.
[90] S. Woosley,et al. Nucleosynthesis and remnants in massive stars of solar metallicity , 2007, astro-ph/0702176.
[91] J. Vinkó,et al. Distance estimate and progenitor characteristics of SN 2005cs in M51 , 2006, astro-ph/0608430.
[92] M. Principe,et al. SN 2005cs in M51 – I. The first month of evolution of a subluminous SN II plateau , 2006, astro-ph/0605700.
[93] Xu Zhou,et al. Determination of the Hubble Constant, the Intrinsic Scatter of Luminosities of Type Ia Supernovae, and Evidence for Nonstandard Dust in Other Galaxies , 2006, astro-ph/0603392.
[94] John T. Rayner,et al. Optical and infrared observations of the Type IIP SN 2002hh from days 3 to 397 , 2006 .
[95] S. Smartt,et al. The progenitor of SN 2005cs in the Whirlpool Galaxy , 2005, astro-ph/0507502.
[96] Philip Massey,et al. The effective temperature scale of galactic red supergiants : Cool, but not as cool as we thought , 2005 .
[97] M. Turatto,et al. Low‐luminosity Type II supernovae: spectroscopic and photometric evolution , 2003, astro-ph/0309264.
[98] Peter W. A. Roming,et al. The Swift Ultra-Violet/Optical Telescope , 2002, SPIE Optics + Photonics.
[99] N. Tanvir,et al. The extra-galactic Cepheid distance scale from LMC and Galactic period-luminosity relations , 2003, astro-ph/0309235.
[100] Nial R. Tanvir,et al. The Cepheid Distance to NGC 1637: A Direct Test of the Expanding Photosphere Method Distance to SN 1999em , 2003, astro-ph/0305259.
[101] M. Turatto,et al. Photometry and Spectroscopy of the Type IIP SN 1999em from Outburst to Dust Formation , 2003 .
[102] M. Hamuy. Observed and Physical Properties of Core-Collapse Supernovae , 2002, astro-ph/0209174.
[103] S. Jha,et al. A Study of the Type II-Plateau Supernova 1999gi and the Distance to its Host Galaxy, NGC 3184 , 2002, astro-ph/0207601.
[104] R. Chornock,et al. The Distance to SN 1999em in NGC 1637 from the Expanding Photosphere Method , 2001, astro-ph/0109535.
[105] A. Filippenko,et al. The Lick Observatory Supernova Search , 1999, astro-ph/9912336.
[106] H. Ford,et al. Final Results from the Hubble Space Telescope Key Project to Measure the Hubble Constant , 1998, astro-ph/9801080.
[107] Alexei V. Filippenko,et al. Optical spectra of supernovae , 1997 .
[108] E. Bertin,et al. SExtractor: Software for source extraction , 1996 .
[109] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[110] P. Harding,et al. The Extragalactic Distance Scale Key Project. IV. The Discovery of Cepheids and a New Distance to M100 Using the Hubble Space Telescope , 1996 .
[111] D. V. Popov. An analytical model for the plateau stage of type II supernovae , 1993 .
[112] R. Kirshner,et al. Expanding Photospheres of Type II Supernovae and the Extragalactic Distance Scale , 1992, astro-ph/9204004.
[113] R. Chevalier,et al. Late emission from supernovae - A window on stellar nucleosynthesis , 1989 .
[114] N. Suntzeff,et al. SN 1987A in the LMC - UBVRI photometry at Cerro Tololo , 1988 .
[115] P. Stetson. DAOPHOT: A COMPUTER PROGRAM FOR CROWDED-FIELD STELLAR PHOTOMETRY , 1987 .
[116] A. V. Filippenko,et al. THE IMPORTANCE OF ATMOSPHERIC DIFFERENTIAL REFRACTION IN SPECTROPHOTOMETRY. , 1982 .
[117] R. Buta,et al. THE BRIGHT SN 1979 C IN M 100. , 1981 .
[118] R. Chevalier. The hydrodynamics of type II supernovae. , 1976 .
[119] D. Arnett,et al. A Theoretical Model for Type II Supernovae , 1973 .