Synthesis, Structures, and Properties of Heptabenzo[7]circulene and Octabenzo[8]circulene.

This study puts forth two new members of fully ortho-benzannulated [ n]circulenes, heptabenzo[7]circulene and octabenzo[8]circulene, which are new negatively curved nanographenes and also represent unprecedented structures of septuple [4]helicene and octuple [4]helicene, respectively. The successful synthesis of them through Scholl reaction in good to excellent yields takes advantage of the reactivity of naphthalene. Quantum chemistry calculations reveal that heptabenzo[7]circulene and octabenzo[8]circulene are both flexible π-molecules and adopt saddle-shaped geometry of C2 and D2 d symmetry, respectively, at the global energy minimum in agreement with the single-crystal structures. A serendipitous discovery from this study is that tetra( tert-butyl) octabenzo[8]circulene in the single crystals self-assemble into a supramolecular nanosheet with an unprecedented motif of π-π stacking. Such a new molecular packing mode, in combination with the demonstrated semiconducting property of octabenzo[8]circulene, suggests a new supramolecular two-dimensional material.

[1]  L. Chi,et al.  Synthesis of Armchair and Chiral Carbon Nanobelts , 2019, Chem.

[2]  M. Stępień,et al.  Bowls, Hoops, and Saddles: Synthetic Approaches to Curved Aromatic Molecules. , 2018, Angewandte Chemie.

[3]  N. Martín,et al.  π-Extended Corannulene-Based Nanographenes: Selective Formation of Negative Curvature. , 2018, Journal of the American Chemical Society.

[4]  K. Itami,et al.  Symmetric Multiple Carbohelicenes , 2018, Synlett.

[5]  T. Okujima,et al.  Synthesis, Structures, and Properties of Core-Expanded Azacoronene Analogue: A Twisted π-System with Two N-Doped Heptagons. , 2018, Journal of the American Chemical Society.

[6]  Q. Miao,et al.  Toward Negatively Curved Carbons. , 2018, Accounts of chemical research.

[7]  T. Herng,et al.  Macrocyclic Polyradicaloids with Unusual Super-ring Structure and Global Aromaticity , 2018, Chem.

[8]  Q. Miao,et al.  Recent Progress in Chemistry of Multiple Helicenes. , 2018, Chemistry, an Asian journal.

[9]  Q. Miao,et al.  A Dipleiadiene-Embedded Aromatic Saddle Consisting of 86 Carbon Atoms. , 2018, Angewandte Chemie.

[10]  Zhifeng Liu,et al.  A Twisted Nanographene Consisting of 96 Carbon Atoms. , 2017, Angewandte Chemie.

[11]  Dongho Kim,et al.  Porphyrin Arch-Tapes: Synthesis, Contorted Structures, and Full Conjugation. , 2017, Journal of the American Chemical Society.

[12]  Zhifeng Liu,et al.  Synthesis, Structure, and Properties of Tetrabenzo[7]circulene. , 2017, Organic letters.

[13]  M. Mayor,et al.  Chirality in curved polyaromatic systems. , 2017, Chemical Society reviews.

[14]  K. Müllen,et al.  Benzo-Fused Double [7]Carbohelicene: Synthesis, Structures, and Physicochemical Properties. , 2017, Angewandte Chemie.

[15]  B. T. King,et al.  Kekulenes, cycloarenes, and heterocycloarenes: addressing electronic structure and aromaticity through experiments and calculations. , 2017, Chemical Society reviews.

[16]  Zhifeng Liu,et al.  Twisted Polycyclic Arenes from Tetranaphthyldiphenylbenzenes by Controlling the Scholl Reaction with Substituents. , 2016, Chemistry.

[17]  A. Whalley,et al.  General Method for the Synthesis of Functionalized Tetrabenzo[8]circulenes. , 2016, The Journal of organic chemistry.

[18]  Dongho Kim,et al.  Octulene: A Hyperbolic Molecular Belt that Binds Chloride Anions. , 2016, Angewandte Chemie.

[19]  Q. Miao,et al.  Studies toward the Synthesis of Hepta-peri-heptabenzo-[7]circulene , 2016 .

[20]  Jianbin Xu,et al.  Electron Mobility Exceeding 10 cm2 V−1 s−1 and Band‐Like Charge Transport in Solution‐Processed n‐Channel Organic Thin‐Film Transistors , 2016, Advanced materials.

[21]  M. Hatanaka Puckering Energetics and Optical Activities of [7]Circulene Conformers. , 2016, The journal of physical chemistry. A.

[22]  Kenichiro Itami,et al.  Structurally uniform and atomically precise carbon nanostructures , 2016 .

[23]  H. Shinokubo,et al.  Nitrogen-embedded buckybowl and its assembly with C60 , 2015, Nature Communications.

[24]  K. Müllen,et al.  New advances in nanographene chemistry. , 2015, Chemical Society reviews.

[25]  K. Nozaki,et al.  Benzene-Fused Azacorannulene Bearing an Internal Nitrogen Atom. , 2015, Angewandte Chemie.

[26]  Jianbin Xu,et al.  Monolayer Field‐Effect Transistors of Nonplanar Organic Semiconductors with Brickwork Arrangement , 2015, Advanced materials.

[27]  Xiaomin Xu,et al.  Aromatic saddles containing two heptagons. , 2015, Journal of the American Chemical Society.

[28]  S. Mannsfeld,et al.  Self‐Assembled Monolayers of Cyclohexyl‐Terminated Phosphonic Acids as a General Dielectric Surface for High‐Performance Organic Thin‐Film Transistors , 2014, Advanced materials.

[29]  K. Skonieczny,et al.  Comparison of oxidative aromatic coupling and the Scholl reaction. , 2013, Angewandte Chemie.

[30]  Toshiyasu Suzuki,et al.  Tetrabenzo[8]circulene: aromatic saddles from negatively curved graphene. , 2013, Journal of the American Chemical Society.

[31]  L. T. Scott,et al.  A grossly warped nanographene and the consequences of multiple odd-membered-ring defects. , 2013, Nature chemistry.

[32]  M. Kuo,et al.  Synthesis, structural analysis, and properties of [8]circulenes. , 2013, Angewandte Chemie.

[33]  H. Terrones Fullerenes and Beyond: Complexity, Morphology, and Functionality in Closed Carbon Nanostructures , 2013 .

[34]  B. T. King,et al.  Septulene: the heptagonal homologue of kekulene. , 2012, Angewandte Chemie.

[35]  Xiaomin Xu,et al.  Curved polycyclic aromatic molecules that are π-isoelectronic to hexabenzocoronene. , 2012, Journal of the American Chemical Society.

[36]  P. Wender,et al.  Rhodium dinaphthocyclooctatetraene complexes: synthesis, characterization and catalytic activity in [5+2] cycloadditions. , 2012, Angewandte Chemie.

[37]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[38]  B. T. King,et al.  Quadrannulene: a nonclassical fullerene fragment. , 2010, Angewandte Chemie.

[39]  R. Rathore,et al.  Oxidative C-C bond formation (Scholl reaction) with DDQ as an efficient and easily recyclable oxidant. , 2009, Organic letters.

[40]  Peter G. Jones,et al.  MP2 and DFT calculations on circulenes and an attempt to prepare the second lowest benzolog, [4]circulene. , 2008, Chemistry.

[41]  Wojciech Pisula,et al.  Graphenes as potential material for electronics. , 2007, Chemical reviews.

[42]  M. Steigerwald,et al.  Molecular wires from contorted aromatic compounds. , 2005, Angewandte Chemie.

[43]  R. Salcedo,et al.  [8]Circulene. Theoretical approach , 2004 .

[44]  J. Li,et al.  Name Reactions: A Collection of Detailed Reaction Mechanisms , 2002 .

[45]  K. Müllen,et al.  Big is beautiful--"aromaticity" revisited from the viewpoint of macromolecular and supramolecular benzene chemistry. , 2001, Chemical reviews.

[46]  A. Mackay,et al.  Diamond from graphite , 1991, Nature.

[47]  Y. Kai,et al.  Synthesis and characterization of [7]circulene , 1983 .

[48]  François Diederich,et al.  Benzenoid versus Annulenoid Aromaticity: Synthesis and Properties of Kekulene , 1978 .

[49]  R. Lawton,et al.  Dibenzo[ghi,mno]fluoranthene , 1966 .

[50]  R. H. Martin,et al.  Synthèses dans la série des dérivés polycycliques aromatiques hautement condensés. L'hexabenzo‐1,12; 2,3; 4,5; 6,7; 8,9; 10,11‐coronène, le tétrabenzo‐4,5; 6,7; 11,12; 13,14‐péropyrène et le tétrabenzo‐1,2; 3,4; 8,9; 10,11‐bisanthène , 1958 .

[51]  R. Scholl,et al.  Synthese des anti‐diperi‐Dibenz‐coronens und dessen Abbau zum Coronen (Hexabenzo‐benzol). (Mitbearbeitet von Horst v. Hoeßle und Solon Brissimdji) , 1932 .

[52]  R. Scholl,et al.  Perylen, ein hoch kondensierter aromatischer Kohlenwasserstoff C20H12 , 1910 .

[53]  R. Scholl,et al.  meso-Benzdianthron (Helianthron), meso-Naphthodianthron, und ein neuer Weg zum Flavanthren , 1910 .