Multiple traces boundary integral formulation for Helmholtz transmission problems

We present a novel boundary integral formulation of the Helmholtz transmission problem for bounded composite scatterers (that is, piecewise constant material parameters in “subdomains”) that directly lends itself to operator preconditioning via Calderón projectors. The method relies on local traces on subdomains and weak enforcement of transmission conditions. The variational formulation is set in Cartesian products of standard Dirichlet and special Neumann trace spaces for which restriction and extension by zero are well defined. In particular, the Neumann trace spaces over each subdomain boundary are built as piecewise $\widetilde{H}^{-1/2}$-distributions over each associated interface. Through the use of interior Calderón projectors, the problem is cast in variational Galerkin form with an operator matrix whose diagonal is composed of block boundary integral operators associated with the subdomains. We show existence and uniqueness of solutions based on an extension of Lions’ projection lemma for non-closed subspaces. We also investigate asymptotic quasi-optimality of conforming boundary element Galerkin discretization. Numerical experiments in 2-D confirm the efficacy of the method and a performance matching that of another widely used boundary element discretization. They also demonstrate its amenability to different types of preconditioning.

[1]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[2]  Olaf Steinbach,et al.  The construction of some efficient preconditioners in the boundary element method , 1998, Adv. Comput. Math..

[3]  J. Bony,et al.  Cours d'analyse : théorie des distributions et analyse de Fourier , 2001 .

[4]  L. Tartar An Introduction to Sobolev Spaces and Interpolation Spaces , 2007 .

[5]  A. Webb,et al.  Introduction to biomedical imaging , 2002 .

[6]  J. Craggs Applied Mathematical Sciences , 1973 .

[7]  E. Thamm,et al.  Single scattering by red blood cells. , 1998, Applied optics.

[8]  Olaf Steinbach,et al.  Numerical Approximation Methods for Elliptic Boundary Value Problems: Finite and Boundary Elements , 2007 .

[9]  Serge Nicaise,et al.  General Interface Problems-II , 1994 .

[10]  Rainer Kress,et al.  Transmission problems for the Helmholtz equation , 1978 .

[11]  Ralf Hiptmair,et al.  Operator Preconditioning , 2006, Comput. Math. Appl..

[12]  R. Harrington Boundary integral formulations for homogeneous material bodies , 1989 .

[13]  Patrick E. Meury Stable finite element boundary element Galerkin schemes for acoustic and electromagnetic scattering , 2007 .

[14]  Ralf Hiptmair,et al.  Regularized Combined Field Integral Equations , 2005, Numerische Mathematik.

[15]  A. Sommerfeld Partial Differential Equations in Physics , 1949 .

[16]  Gundolf Haase,et al.  Adaptive Domain Decomposition Methods for Finite and Boundary Element Equations , 1997 .

[17]  C. Schwab,et al.  Boundary Element Methods , 2010 .

[18]  G. Hsiao,et al.  A domain decomposition method based on BEM and FEM for linear exterior boundary value problems , 2001 .

[19]  Wolfgang L. Wendland,et al.  Boundary integral equations , 2008 .

[20]  Claus Müller,et al.  On the behavior of the solutions of the differential equation ΔU = F(x,u) in the neighborhood of a point , 1954 .

[21]  J. Lions,et al.  Problèmes aux limites non homogènes et applications , 1968 .

[22]  George C. Hsiao,et al.  Boundary element methods: an overview , 2006 .

[23]  J. Lions,et al.  Équations Différentielles Opérationnelles Et Problèmes Aux Limites , 1961 .

[24]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[25]  Otmar Scherzer,et al.  Detecting Interfaces in a Parabolic-Elliptic Problem from Surface Measurements , 2007, SIAM J. Numer. Anal..

[26]  Jean-Claude Nédélec,et al.  Des préconditionneurs pour la résolution numérique des équations intégrales de frontière de l'acoustique , 2000 .

[27]  B. Plamenevskii,et al.  Elliptic Problems in Domains with Piecewise Smooth Boundaries , 1994 .

[28]  Charbel Farhat,et al.  Implicit parallel processing in structural mechanics , 1994 .

[29]  Olaf Steinbach,et al.  Domain decomposition methods via boundary integral equations , 2000 .

[30]  R. Kellogg HIGHER ORDER SINGULARITIES FOR INTERFACE PROBLEMS , 1972 .

[31]  M. Costabel,et al.  Singularities of Maxwell interface problems , 1999 .

[32]  T. Petersdorff,et al.  Boundary integral equations for mixed Dirichlet, Neumann and transmission problems , 1989 .

[33]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[34]  Wolfgang L. Wendland Boundary Element Topics , 1997 .

[35]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[36]  R. HIPTMAIR,et al.  Stabilized FEM-BEM Coupling for Helmholtz Transmission Problems , 2006, SIAM J. Numer. Anal..

[37]  Karl F. Warnick,et al.  Numerical analysis for electromagnetic integral equations , 2008 .

[38]  Francisco Javier Sayas González,et al.  Symmetric boundary integral formulations for Helmhotz transmission problem , 2009 .

[39]  Christophe Hazard,et al.  On the solution of time-harmonic scattering problems for Maxwell's equations , 1996 .

[40]  Olaf Steinbach,et al.  Boundary element preconditioners for a hypersingular integral equation on an interval , 1999, Adv. Comput. Math..

[41]  Ralf Hiptmair,et al.  Boundary Element Methods for Maxwell Transmission Problems in Lipschitz Domains , 2003, Numerische Mathematik.

[42]  Matthew N. O. Sadiku,et al.  Numerical Techniques in Electromagnetics , 2000 .

[43]  J. Nédélec Acoustic and Electromagnetic Equations : Integral Representations for Harmonic Problems , 2001 .

[44]  A. H. Schatz,et al.  An observation concerning Ritz-Galerkin methods with indefinite bilinear forms , 1974 .

[45]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[46]  M. Schechter Principles of Functional Analysis , 1971 .

[47]  Martin Costabel,et al.  A direct boundary integral equation method for transmission problems , 1985 .

[48]  W. McLean Strongly Elliptic Systems and Boundary Integral Equations , 2000 .

[49]  O. Steinbach,et al.  Robust Boundary Element Domain Decomposition Solvers in Acoustics , 2011 .

[50]  Habib Ammari,et al.  An Introduction to Mathematics of Emerging Biomedical Imaging , 2008 .

[51]  V. A. Kondrat'ev,et al.  Boundary problems for elliptic equations in domains with conical or angular points , 1967 .

[52]  Olaf Steinbach,et al.  Boundary Element Tearing and Interconnecting Methods , 2003, Computing.

[53]  Martin Costabel,et al.  Boundary Integral Operators on Lipschitz Domains: Elementary Results , 1988 .

[54]  E. N. Dancer ELLIPTIC PROBLEMS IN DOMAINS WITH PIECEWISE SMOOTH BOUNDARIES (de Gruyter Expositions in Mathematics 13) , 1996 .

[55]  J. Lions,et al.  Problèmes aux limites non homogènes (VI) , 1963 .