Eigenfunction Behavior and Adaptive Finite Element Approximations of Nonlinear Eigenvalue Problems in Quantum Physics

In this paper, we study finite element approximations of a class of nonlinear eigenvalue problems arising from quantum physics. We derive both a priori and a posteriori finite element error estimates and obtain optimal convergence rates for both linear and quadratic finite element approximations. In particular, we analyze the convergence and complexity of an adaptive finite element method. In our analysis, we utilize certain relationship between the finite element eigenvalue problem and the associated finite element boundary value approximations. We also present several numerical examples in quantum physics that support our theory.

[1]  Xiaoying Dai,et al.  Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues , 2012, 1210.1846.

[2]  G. Burton Sobolev Spaces , 2013 .

[3]  J. Rappaz,et al.  Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .

[4]  Joseph W. Jerome,et al.  L∞ stability of finite element approximations to elliptic gradient equations , 1990 .

[5]  Kunibert G. Siebert,et al.  A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .

[6]  Aihui Zhou,et al.  Numerical analysis of finite dimensional approximations of Kohn–Sham models , 2011, Adv. Comput. Math..

[7]  Rob P. Stevenson,et al.  Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..

[8]  ROB STEVENSON,et al.  The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..

[9]  Martin Schechter,et al.  Unique continuation for Schrodinger operators with unbounded potentials , 1980 .

[10]  Pedro Morin,et al.  Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems , 2011 .

[11]  Christian Kreuzer,et al.  Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..

[12]  Aihui Zhou,et al.  A singularity-based eigenfunction decomposition for Kohn-Sham equations , 2016 .

[13]  R. Martin,et al.  Electronic Structure: Basic Theory and Practical Methods , 2004 .

[14]  Vikram Gavini,et al.  Higher-order adaptive finite-element methods for Kohn-Sham density functional theory , 2012, J. Comput. Phys..

[15]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[16]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..

[17]  M. Dauge Elliptic boundary value problems on corner domains , 1988 .

[18]  Huajie Chen,et al.  Adaptive Finite Element Approximations for a Class of Nonlinear Eigenvalue Problems in Quantum Physics , 2011 .

[19]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[20]  Wolfgang Dahmen,et al.  Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.

[21]  Michael Vogelius,et al.  Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .

[22]  Gong,et al.  FINITE ELEMENT APPROXIMATIONS FOR SCHR ¨ ODINGER EQUATIONS WITH APPLICATIONS TO ELECTRONIC STRUCTURE COMPUTATIONS * , 2008 .

[23]  Elias M. Stein,et al.  Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .

[24]  Dietmar Gallistl,et al.  An optimal adaptive FEM for eigenvalue clusters , 2015, Numerische Mathematik.

[25]  Yvon Maday,et al.  Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models , 2010, 1003.1612.

[26]  Wolfgang Dahmen,et al.  Adaptive eigenvalue computation: complexity estimates , 2007, Numerische Mathematik.

[27]  Richard J. Needs,et al.  A pseudopotential total energy study of impurity-promoted intergranular embrittlement , 1990 .

[28]  Yvon Maday,et al.  Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..

[29]  M. Dauge Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .

[30]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[31]  W. Dörfler A convergent adaptive algorithm for Poisson's equation , 1996 .

[32]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[33]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[34]  Aihui Zhou An analysis of finite-dimensional approximations for the ground state solution of Bose?Einstein condensates , 2004 .

[35]  Peter Pesic,et al.  Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability , 2003 .

[36]  Huajie Chen,et al.  Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model , 2010 .

[37]  Carsten Carstensen,et al.  An Adaptive Finite Element Eigenvalue Solver of Quasi-Optimal Computational Complexity , 2009 .

[38]  Paul Steinmann,et al.  On the adaptive finite element analysis of the Kohn–Sham equations: methods, algorithms, and implementation , 2016 .

[39]  Andreas Veeser,et al.  Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.

[40]  Jinchao Xu,et al.  Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..

[41]  Lianhua He,et al.  Convergence and Optimal Complexity of Adaptive Finite Element Methods , 2010, 1002.0887.

[42]  Mark S. C. Reed,et al.  Method of Modern Mathematical Physics , 1972 .

[43]  Aihui Zhou,et al.  Adaptive Finite Element Approximations for Kohn-Sham Models , 2013, Multiscale Model. Simul..

[44]  Stefano Giani,et al.  A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..

[45]  W. Doerfler,et al.  A robust adaptive strategy for the nonlinear Poisson equation , 1995, Computing.

[46]  Fang,et al.  A TWO-SCALE HIGHER-ORDER FINITE ELEMENT DISCRETIZATION FOR SCHROEDINGER EQUATION , 2009 .

[47]  Jinchao Xu,et al.  Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .

[48]  Alan Demlow,et al.  Convergence and Optimality of Higher-Order Adaptive Finite Element Methods for Eigenvalue Clusters , 2015, SIAM J. Numer. Anal..

[49]  Aihui Zhou Finite dimensional approximations for the electronic ground state solution of a molecular system , 2007 .

[50]  E. Carter,et al.  Orbital-Free Kinetic-Energy Density Functional Theory , 2002 .

[51]  Michael J. Holst,et al.  The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation , 2007, SIAM J. Numer. Anal..

[52]  Aihui Zhou Hohenberg–Kohn theorem for Coulomb type systems and its generalization , 2012, Journal of Mathematical Chemistry.

[53]  R. J. Ballagh,et al.  Coherent Dynamics of Vortex Formation in Trapped Bose-Einstein Condensates , 1999 .

[54]  Tsukada,et al.  Adaptive finite-element method for electronic-structure calculations. , 1996, Physical review. B, Condensed matter.

[55]  Thomas H. Wol,et al.  Recent work on sharp estimates in second order elliptic unique continuation problems , 1992 .

[56]  A. Becke Perspective: Fifty years of density-functional theory in chemical physics. , 2014, The Journal of chemical physics.

[57]  Eduardo M. Garau,et al.  Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.

[58]  Weizhu Bao,et al.  The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics , 2007 .

[59]  Mats G. Larson,et al.  A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..

[60]  R. Penrose On Gravity's role in Quantum State Reduction , 1996 .

[61]  Bin Yang,et al.  Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics , 2020 .

[62]  E. Lieb Thomas-fermi and related theories of atoms and molecules , 1981 .

[63]  J. C. Slater A Simplification of the Hartree-Fock Method , 1951 .

[64]  Michael Holst,et al.  Local Convergence of Adaptive Methods for Nonlinear Partial Differential Equations , 2010, 1001.1382.

[65]  Ricardo H. Nochetto,et al.  Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..

[66]  Endre Süli,et al.  Existence and Convergence Results for the Galerkin Approximation of an Electronic Density Functional , 2010 .

[67]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.

[68]  Huajie Chen,et al.  Orbital-Free Density Functional Theory for Molecular Structure Calculations , 2008 .

[69]  Irene M. Moroz,et al.  A numerical study of the Schrödinger-Newton equations , 2003 .

[70]  Steven D. Schwartz,et al.  Theoretical methods in condensed phase chemistry , 2002 .