暂无分享,去创建一个
[1] Xiaoying Dai,et al. Convergence and quasi-optimal complexity of adaptive finite element computations for multiple eigenvalues , 2012, 1210.1846.
[2] G. Burton. Sobolev Spaces , 2013 .
[3] J. Rappaz,et al. Consistency, stability, a priori and a posteriori errors for Petrov-Galerkin methods applied to nonlinear problems , 1994 .
[4] Joseph W. Jerome,et al. L∞ stability of finite element approximations to elliptic gradient equations , 1990 .
[5] Kunibert G. Siebert,et al. A BASIC CONVERGENCE RESULT FOR CONFORMING ADAPTIVE FINITE ELEMENTS , 2008 .
[6] Aihui Zhou,et al. Numerical analysis of finite dimensional approximations of Kohn–Sham models , 2011, Adv. Comput. Math..
[7] Rob P. Stevenson,et al. Optimality of a Standard Adaptive Finite Element Method , 2007, Found. Comput. Math..
[8] ROB STEVENSON,et al. The completion of locally refined simplicial partitions created by bisection , 2008, Math. Comput..
[9] Martin Schechter,et al. Unique continuation for Schrodinger operators with unbounded potentials , 1980 .
[10] Pedro Morin,et al. Convergence and quasi-optimality of adaptive FEM for Steklov eigenvalue problems , 2011 .
[11] Christian Kreuzer,et al. Quasi-Optimal Convergence Rate for an Adaptive Finite Element Method , 2008, SIAM J. Numer. Anal..
[12] Aihui Zhou,et al. A singularity-based eigenfunction decomposition for Kohn-Sham equations , 2016 .
[13] R. Martin,et al. Electronic Structure: Basic Theory and Practical Methods , 2004 .
[14] Vikram Gavini,et al. Higher-order adaptive finite-element methods for Kohn-Sham density functional theory , 2012, J. Comput. Phys..
[15] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[16] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods , 2002, SIAM Rev..
[17] M. Dauge. Elliptic boundary value problems on corner domains , 1988 .
[18] Huajie Chen,et al. Adaptive Finite Element Approximations for a Class of Nonlinear Eigenvalue Problems in Quantum Physics , 2011 .
[19] Qiang Du,et al. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..
[20] Wolfgang Dahmen,et al. Adaptive Finite Element Methods with convergence rates , 2004, Numerische Mathematik.
[21] Michael Vogelius,et al. Feedback and adaptive finite element solution of one-dimensional boundary value problems , 1984 .
[22] Gong,et al. FINITE ELEMENT APPROXIMATIONS FOR SCHR ¨ ODINGER EQUATIONS WITH APPLICATIONS TO ELECTRONIC STRUCTURE COMPUTATIONS * , 2008 .
[23] Elias M. Stein,et al. Unique continuation and absence of positive eigenvalues for Schrodinger operators , 1985 .
[24] Dietmar Gallistl,et al. An optimal adaptive FEM for eigenvalue clusters , 2015, Numerische Mathematik.
[25] Yvon Maday,et al. Numerical analysis of the planewave discretization of some orbital-free and Kohn-Sham models , 2010, 1003.1612.
[26] Wolfgang Dahmen,et al. Adaptive eigenvalue computation: complexity estimates , 2007, Numerische Mathematik.
[27] Richard J. Needs,et al. A pseudopotential total energy study of impurity-promoted intergranular embrittlement , 1990 .
[28] Yvon Maday,et al. Numerical Analysis of Nonlinear Eigenvalue Problems , 2009, J. Sci. Comput..
[29] M. Dauge. Elliptic Boundary Value Problems on Corner Domains: Smoothness and Asymptotics of Solutions , 1988 .
[30] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[31] W. Dörfler. A convergent adaptive algorithm for Poisson's equation , 1996 .
[32] S. H. Vosko,et al. Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .
[33] A. Zunger,et al. Self-interaction correction to density-functional approximations for many-electron systems , 1981 .
[34] Aihui Zhou. An analysis of finite-dimensional approximations for the ground state solution of Bose?Einstein condensates , 2004 .
[35] Peter Pesic,et al. Abel's Proof: An Essay on the Sources and Meaning of Mathematical Unsolvability , 2003 .
[36] Huajie Chen,et al. Numerical approximations of a nonlinear eigenvalue problem and applications to a density functional model , 2010 .
[37] Carsten Carstensen,et al. An Adaptive Finite Element Eigenvalue Solver of Quasi-Optimal Computational Complexity , 2009 .
[38] Paul Steinmann,et al. On the adaptive finite element analysis of the Kohn–Sham equations: methods, algorithms, and implementation , 2016 .
[39] Andreas Veeser,et al. Convergent adaptive finite elements for the nonlinear Laplacian , 2002, Numerische Mathematik.
[40] Jinchao Xu,et al. Local and parallel finite element algorithms based on two-grid discretizations , 2000, Math. Comput..
[41] Lianhua He,et al. Convergence and Optimal Complexity of Adaptive Finite Element Methods , 2010, 1002.0887.
[42] Mark S. C. Reed,et al. Method of Modern Mathematical Physics , 1972 .
[43] Aihui Zhou,et al. Adaptive Finite Element Approximations for Kohn-Sham Models , 2013, Multiscale Model. Simul..
[44] Stefano Giani,et al. A Convergent Adaptive Method for Elliptic Eigenvalue Problems , 2009, SIAM J. Numer. Anal..
[45] W. Doerfler,et al. A robust adaptive strategy for the nonlinear Poisson equation , 1995, Computing.
[46] Fang,et al. A TWO-SCALE HIGHER-ORDER FINITE ELEMENT DISCRETIZATION FOR SCHROEDINGER EQUATION , 2009 .
[47] Jinchao Xu,et al. Numerische Mathematik Convergence and optimal complexity of adaptive finite element eigenvalue computations , 2022 .
[48] Alan Demlow,et al. Convergence and Optimality of Higher-Order Adaptive Finite Element Methods for Eigenvalue Clusters , 2015, SIAM J. Numer. Anal..
[49] Aihui Zhou. Finite dimensional approximations for the electronic ground state solution of a molecular system , 2007 .
[50] E. Carter,et al. Orbital-Free Kinetic-Energy Density Functional Theory , 2002 .
[51] Michael J. Holst,et al. The Finite Element Approximation of the Nonlinear Poisson-Boltzmann Equation , 2007, SIAM J. Numer. Anal..
[52] Aihui Zhou. Hohenberg–Kohn theorem for Coulomb type systems and its generalization , 2012, Journal of Mathematical Chemistry.
[53] R. J. Ballagh,et al. Coherent Dynamics of Vortex Formation in Trapped Bose-Einstein Condensates , 1999 .
[54] Tsukada,et al. Adaptive finite-element method for electronic-structure calculations. , 1996, Physical review. B, Condensed matter.
[55] Thomas H. Wol,et al. Recent work on sharp estimates in second order elliptic unique continuation problems , 1992 .
[56] A. Becke. Perspective: Fifty years of density-functional theory in chemical physics. , 2014, The Journal of chemical physics.
[57] Eduardo M. Garau,et al. Convergence of adaptive finite element methods for eigenvalue problems , 2008, 0803.0365.
[58] Weizhu Bao,et al. The Nonlinear Schrödinger Equation and Applications in Bose-Einstein Condensation and Plasma Physics , 2007 .
[59] Mats G. Larson,et al. A Posteriori and a Priori Error Analysis for Finite Element Approximations of Self-Adjoint Elliptic Eigenvalue Problems , 2000, SIAM J. Numer. Anal..
[60] R. Penrose. On Gravity's role in Quantum State Reduction , 1996 .
[61] Bin Yang,et al. Eigenfunction behavior and adaptive finite element approximations of nonlinear eigenvalue problems in quantum physics , 2020 .
[62] E. Lieb. Thomas-fermi and related theories of atoms and molecules , 1981 .
[63] J. C. Slater. A Simplification of the Hartree-Fock Method , 1951 .
[64] Michael Holst,et al. Local Convergence of Adaptive Methods for Nonlinear Partial Differential Equations , 2010, 1001.1382.
[65] Ricardo H. Nochetto,et al. Convergence of Adaptive Finite Element Methods for General Second Order Linear Elliptic PDEs , 2005, SIAM J. Numer. Anal..
[66] Endre Süli,et al. Existence and Convergence Results for the Galerkin Approximation of an Electronic Density Functional , 2010 .
[67] Michel Fortin,et al. Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.
[68] Huajie Chen,et al. Orbital-Free Density Functional Theory for Molecular Structure Calculations , 2008 .
[69] Irene M. Moroz,et al. A numerical study of the Schrödinger-Newton equations , 2003 .
[70] Steven D. Schwartz,et al. Theoretical methods in condensed phase chemistry , 2002 .