Design Optimization of IPMSM for 42 V Integrated Starter Alternator Using Lumped Parameter Model and Genetic Algorithms

In this paper, the design optimization of an interior permanent magnet synchronous machine is presented using lumped parameter model and genetic algorithms for 42 V integrated starter alternator application. The aim of the optimization is to increase starting torque while keeping torque ripple below 10% and increasing power output in generating mode at high speed and reducing the permanent magnet weight. A finite-element method is used to verify and compare the optimized machine characteristics.

[1]  Franco Villata,et al.  Design criteria of an IPM machine suitable for field-weakening operation , 1990 .

[2]  Min-Fu Hsieh,et al.  A Generalized Magnetic Circuit Modeling Approach for Design of Surface Permanent-Magnet Machines , 2012, IEEE Transactions on Industrial Electronics.

[3]  Sung-Min Kim,et al.  Rotor-Design Strategy of IPMSM for 42 V Integrated Starter Generator , 2010, IEEE Transactions on Magnetics.

[4]  Alessandro Salvini,et al.  Comparative Analysis between Modern Heuristics and Hybrid Algorithms , 2007 .

[5]  D. Howe,et al.  Prediction of open-circuit airgap field distribution in brushless machines having an inset permanent magnet rotor topology , 1994 .

[6]  T. Lipo,et al.  Analytical Solution for Cogging Torque in Surface Permanent-Magnet Motors Using Conformal Mapping , 2008, IEEE Transactions on Magnetics.

[7]  Stephane Vivier,et al.  Combination of Finite-Element and Analytical Models in the Optimal Multidomain Design of Machines: Application to an Interior Permanent-Magnet Starter Generator , 2010 .

[8]  S. Z. Jiang,et al.  Analytical Modeling of Open-Circuit Air-Gap Field Distributions in Multisegment and Multilayer Interior Permanent-Magnet Machines , 2009, IEEE Transactions on Magnetics.

[9]  M L Bash,et al.  Modeling of Salient-Pole Wound-Rotor Synchronous Machines for Population-Based Design , 2011, IEEE Transactions on Energy Conversion.

[10]  Z. Zhu,et al.  Improved analytical model for predicting the magnetic field distribution in brushless permanent-magnet machines , 2002 .

[11]  Edward Carl Francis Lovelace Optimization of a magnetically saturable interior permanent-magnet synchronous machine drive , 2000 .

[12]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[13]  Seung-Ki Sul,et al.  Practical design criteria of interior permanent magnet synchronous motor for 42V integrated starter-generator , 2003, IEEE International Electric Machines and Drives Conference, 2003. IEMDC'03..

[14]  Timothy J. E. Miller,et al.  Brushless Permanent-Magnet and Reluctance Motor Drives , 1989 .

[15]  Marco Amrhein,et al.  Induction Machine Modeling Approach Based on 3-D Magnetic Equivalent Circuit Framework , 2010, IEEE Transactions on Energy Conversion.

[16]  Ion Boldea Reluctance synchronous machines and drives , 1996 .

[17]  Thomas M. Jahns,et al.  A saturating lumped-parameter model for an interior PM synchronous machine , 2002 .

[18]  Z. Zhu,et al.  Instantaneous magnetic field distribution in brushless permanent magnet DC motors. I. Open-circuit field , 1993 .

[19]  David H. Wolpert,et al.  No free lunch theorems for optimization , 1997, IEEE Trans. Evol. Comput..

[20]  David A. Torrey,et al.  Magnetic circuit model for the mutually coupled switched reluctance machine , 1997, IAS '97. Conference Record of the 1997 IEEE Industry Applications Conference Thirty-Second IAS Annual Meeting.

[21]  C. Hwang,et al.  Effects of leakage flux on magnetic fields of interior permanent magnet synchronous motors , 2001 .

[22]  C. E. Nino-Baron,et al.  Iron and Magnet Losses and Torque Calculation of Interior Permanent Magnet Synchronous Machines Using Magnetic Equivalent Circuit , 2010, IEEE Transactions on Magnetics.

[23]  M. A. Rahman,et al.  Analytical models for exterior-type permanent magnet synchronous motors , 1985 .

[24]  Chunting Mi,et al.  Analytical method for predicting the air-gap flux of interior-type permanent-magnet machines , 2004, IEEE Transactions on Magnetics.