Time-Resolved Analysis Reveals Rapid Dynamics and Broad Scope of the CBP/p300 Acetylome

[1]  Mousheng Xu,et al.  Synthetic transcription elongation factors license transcription across repressive chromatin , 2017, Science.

[2]  J. Langston,et al.  Discovery of Spiro Oxazolidinediones as Selective, Orally Bioavailable Inhibitors of p300/CBP Histone Acetyltransferases , 2017, ACS medicinal chemistry letters.

[3]  Chunaram Choudhary,et al.  Discovery of a selective catalytic p300/CBP inhibitor that targets lineage-specific tumours , 2017, Nature.

[4]  M. Bienz,et al.  Constitutive scaffolding of multiple Wnt enhanceosome components by Legless/BCL9 , 2017, eLife.

[5]  Christie S. Chang,et al.  The BioGRID interaction database: 2017 update , 2016, Nucleic Acids Res..

[6]  M. Selbach,et al.  Kinetic Analysis of Protein Stability Reveals Age-Dependent Degradation , 2016, Cell.

[7]  T. Arnesen,et al.  The world of protein acetylation. , 2016, Biochimica et biophysica acta.

[8]  P. Cole,et al.  Modulation of p300/CBP Acetylation of Nucleosomes by Bromodomain Ligand I-CBP112. , 2016, Biochemistry.

[9]  A. Deiters,et al.  A Chemical Biology Approach to Reveal Sirt6-targeted Histone H3 Sites in Nucleosomes. , 2016, ACS chemical biology.

[10]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[11]  Andrew J. Bannister,et al.  Generation of a Selective Small Molecule Inhibitor of the CBP/p300 Bromodomain for Leukemia Therapy. , 2015, Cancer research.

[12]  Jan C. Refsgaard,et al.  Avoiding abundance bias in the functional annotation of posttranslationally modified proteins , 2015, Nature Methods.

[13]  Sebastian A. Wagner,et al.  Acetylation site specificities of lysine deacetylase inhibitors in human cells , 2015, Nature Biotechnology.

[14]  Philip A. Cole,et al.  Protein Lysine Acetylation by p300/CBP , 2015, Chemical reviews.

[15]  E. Verdin,et al.  50 years of protein acetylation: from gene regulation to epigenetics, metabolism and beyond , 2014, Nature Reviews Molecular Cell Biology.

[16]  G. Perdew,et al.  Aryl hydrocarbon receptor ligands in cancer: friend and foe , 2014, Nature Reviews Cancer.

[17]  Narayanaswamy Srinivasan,et al.  CLAP: A web-server for automatic classification of proteins with special reference to multi-domain proteins , 2014, BMC Bioinformatics.

[18]  Matthew J. Gamble,et al.  MacroH2A1.1 and PARP-1 cooperate to regulate transcription by promoting CBP-mediated H2B acetylation , 2014, Nature Structural &Molecular Biology.

[19]  Chunaram Choudhary,et al.  The growing landscape of lysine acetylation links metabolism and cell signalling , 2014, Nature Reviews Molecular Cell Biology.

[20]  M. Hirschey,et al.  Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. , 2014, Molecular cell.

[21]  Sebastian A. Wagner,et al.  Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae , 2014, Molecular Systems Biology.

[22]  Sebastian A. Wagner,et al.  Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. , 2013, Cell reports.

[23]  N. Kelleher,et al.  Measurement of acetylation turnover at distinct lysines in human histones identifies long-lived acetylation sites , 2013, Nature Communications.

[24]  Edison T. Liu,et al.  Regulation of Transcription through Acetylation of H3K122 on the Lateral Surface of the Histone Octamer , 2013, Cell.

[25]  Paul K. Brindle,et al.  Is histone acetylation the most important physiological function for CBP and p300? , 2012, Aging.

[26]  Jeffrey Heer,et al.  SpanningAspectRatioBank Easing FunctionS ArrayIn ColorIn Date Interpolator MatrixInterpola NumObjecPointI Rectang ISchedu Parallel Pause Scheduler Sequen Transition Transitioner Transiti Tween Co DelimGraphMLCon IData JSONCon DataField DataSc Dat DataSource Data DataUtil DirtySprite LineS RectSprite , 2011 .

[27]  Stefan Knapp,et al.  Bromodomains as therapeutic targets , 2011, Expert Reviews in Molecular Medicine.

[28]  A. Melnick,et al.  The Leukemogenicity of AML1-ETO Is Dependent on Site-Specific Lysine Acetylation , 2011, Science.

[29]  M. Mann,et al.  Andromeda: a peptide search engine integrated into the MaxQuant environment. , 2011, Journal of proteome research.

[30]  William N. Venables,et al.  Modern Applied Statistics with S , 2010 .

[31]  R. Young,et al.  Histone H3K27ac separates active from poised enhancers and predicts developmental state , 2010, Proceedings of the National Academy of Sciences.

[32]  Peter J. Park,et al.  An assessment of histone-modification antibody quality , 2010, Nature Structural &Molecular Biology.

[33]  Jianmin Wang,et al.  CBP/p300 double null cells reveal effect of coactivator level and diversity on CREB transactivation , 2010, The EMBO journal.

[34]  K. Gevaert,et al.  Improved visualization of protein consensus sequences by iceLogo , 2009, Nature Methods.

[35]  Jeroen Krijgsveld,et al.  Cooperative binding of two acetylation marks on a histone tail by a single bromodomain , 2009, Nature.

[36]  S. Grossman,et al.  CBP and p300 are cytoplasmic E4 polyubiquitin ligases for p53 , 2009, Proceedings of the National Academy of Sciences.

[37]  M. Mann,et al.  Lysine Acetylation Targets Protein Complexes and Co-Regulates Major Cellular Functions , 2009, Science.

[38]  J. Tyler,et al.  CBP/p300-mediated acetylation of histone H3 on lysine 56 , 2009, Nature.

[39]  E. Seto,et al.  Lysine acetylation: codified crosstalk with other posttranslational modifications. , 2008, Molecular cell.

[40]  J. Chin,et al.  Genetically encoding N(epsilon)-acetyllysine in recombinant proteins. , 2008, Nature chemical biology.

[41]  Lokesh Kumar,et al.  Mfuzz: A software package for soft clustering of microarray data , 2007, Bioinformation.

[42]  N. Grishin,et al.  Substrate and functional diversity of lysine acetylation revealed by a proteomics survey. , 2006, Molecular cell.

[43]  Y Fujii-Kuriyama,et al.  Molecular mechanisms of AhR functions in the regulation of cytochrome P450 genes. , 2005, Biochemical and biophysical research communications.

[44]  Matthias E. Futschik,et al.  Noise-robust Soft Clustering of Gene Expression Time-course Data , 2005, J. Bioinform. Comput. Biol..

[45]  R. Roeder,et al.  Regulation of the p300 HAT domain via a novel activation loop , 2004, Nature Structural &Molecular Biology.

[46]  P. Cole,et al.  Transcriptional Coactivator Protein p300 , 2001, The Journal of Biological Chemistry.

[47]  Christine Brun,et al.  In silico prediction of protein-protein interactions in human macrophages , 2001, BMC Research Notes.

[48]  C. Allis,et al.  Overlapping but Distinct Patterns of Histone Acetylation by the Human Coactivators p300 and PCAF within Nucleosomal Substrates* , 1999, The Journal of Biological Chemistry.

[49]  B. Howard,et al.  The Transcriptional Coactivators p300 and CBP Are Histone Acetyltransferases , 1996, Cell.

[50]  Jeffrey Heer,et al.  D³ Data-Driven Documents , 2011, IEEE Transactions on Visualization and Computer Graphics.

[51]  Stephanie Spange,et al.  Acetylation of non-histone proteins modulates cellular signalling at multiple levels. , 2009, The international journal of biochemistry & cell biology.

[52]  Brian D. Ripley,et al.  Modern Applied Statistics with S Fourth edition , 2002 .

[53]  C. Allis,et al.  Histone acetyltransferases. , 2001, Annual review of biochemistry.