Energetic efficiency of Escherichia coli: effects of mutations in components of the aerobic respiratory chain
暂无分享,去创建一个
R. Gennis | M. D. de Mattos | O. Neijssel | M W Calhoun | K L Oden | R B Gennis | M J de Mattos | O M Neijssel | M. J. T. Mattos | M. Calhoun | K. L. Oden | K. Oden | B. tROBERT | Gennis
[1] J. Guest,et al. FNR‐dependent repression of the ndh gene of Escherichia coli and metal ion requirement for FNR‐regulated gene expression , 1989, Molecular microbiology.
[2] P. J. Phipps,et al. Chapter III Chemical Analysis of Microbial Cells , 1971 .
[3] R. Gennis,et al. Requirement for terminal cytochromes in generation of the aerobic signal for the arc regulatory system in Escherichia coli: study utilizing deletions and lac fusions of cyo and cyd , 1990, Journal of bacteriology.
[4] H. Kaback,et al. EPR characterization of the iron-sulfur-containing NADH-ubiquinone oxidoreductase of the Escherichia coli aerobic respiratory chain. , 1989, Biochemistry.
[5] M. Hayashi,et al. Purification of NADH-ferricyanide dehydrogenase and NADH-quinone reductase from Escherichia coli membranes and their roles in the respiratory chain. , 1989, Biochimica et biophysica acta.
[6] Michael J. Miller,et al. The cytochrome d complex is a coupling site in the aerobic respiratory chain of Escherichia coli. , 1985, The Journal of biological chemistry.
[7] R. Gennis,et al. Cytochrome o (cyoABCDE) and d (cydAB) oxidase gene expression in Escherichia coli is regulated by oxygen, pH, and the fnr gene product , 1990, Journal of bacteriology.
[8] D. Tempest. The biochemical significance of microbial growth yields: A reassessment , 1978 .
[9] U. Schulte,et al. Molecular genetic studies of complex I in Neurospora crassa, Aspergillus niger and Escherichia coli. , 1992, Biochimica et biophysica acta.
[10] H. Kaback,et al. NADH-ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. , 1987, Biochemistry.
[11] R. Gennis,et al. The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa3-type family of cytochrome c oxidases. , 1990, The Journal of biological chemistry.
[12] Y. Anraku,et al. The aerobic respiratory chain of Escherichia coli , 1987 .
[13] R. Poole,et al. The respiratory chains of Escherichia coli. , 1984, Microbiological reviews.
[14] I. G. Young,et al. Amplification of the respiratory NADH dehydrogenase of Escherichia coli by gene cloning. , 1978, Gene.
[15] T. Yagi. Bacterial NADH-quinone oxidoreductases , 1991, Journal of bioenergetics and biomembranes.
[16] S. Pirt. The maintenance energy of bacteria in growing cultures , 1965, Proceedings of the Royal Society of London. Series B. Biological Sciences.
[17] I. G. Young,et al. Stereospecificity and requirements for activity of the respiratory NADH dehydrogenase of Escherichia coli. , 1983, Biochemistry.
[18] I. G. Young,et al. Genetic identification and purification of the respiratory NADH dehydrogenase of Escherichia coli. , 1981, Biochemistry.
[19] R. Gennis,et al. Demonstration of separate genetic loci encoding distinct membrane-bound respiratory NADH dehydrogenases in Escherichia coli , 1993, Journal of bacteriology.
[20] W. Hempfling,et al. Oxygen-limited continuous culture and respiratory energy conservation in Escherichia coli , 1978, Journal of bacteriology.
[21] R. Gennis,et al. Identification of subunit I as the cytochrome b558 component of the cytochrome d terminal oxidase complex of Escherichia coli. , 1984, The Journal of biological chemistry.
[22] R. Gennis,et al. Immunological characterization of the cytochrome o terminal oxidase from Escherichia coli. , 1983, The Journal of biological chemistry.
[23] R. Gennis,et al. Properties of the two terminal oxidases of Escherichia coli. , 1991, Biochemistry.
[24] H. Krisch,et al. Interposon mutagenesis of soil and water bacteria: a family of DNA fragments designed for in vitro insertional mutagenesis of gram-negative bacteria. , 1987, Gene.
[25] L. Enquist,et al. Experiments With Gene Fusions , 1984 .
[26] R. Gennis,et al. The nucleotide sequence of the cyd locus encoding the two subunits of the cytochrome d terminal oxidase complex of Escherichia coli. , 1988, The Journal of biological chemistry.
[27] D. L. Harris,et al. Mechanistic stoichiometry of mitochondrial oxidative phosphorylation. , 1991, Biochemistry.
[28] Y. Anraku. Bacterial electron transport chains. , 1988, Annual review of biochemistry.
[29] A. Sharrocks,et al. FNR activates and represses transcription in vitro , 1991, Proceedings of the Royal Society of London. Series B: Biological Sciences.
[30] H. Kaback,et al. D-lactate oxidation and generation of the proton electrochemical gradient in membrane vesicles from Escherichia coli GR19N and in proteoliposomes reconstituted with purified D-lactate dehydrogenase and cytochrome o oxidase. , 1986, Biochemistry.
[31] R. Gennis,et al. Genomic replacement in Escherichia coli K-12 using covalently closed circular plasmid DNA. , 1990, Gene.
[32] D. Tempest,et al. Chapter XIII The Continuous Cultivation of Micro-organisms: 2. Construction of a Chemostat , 1970 .
[33] I. G. Young,et al. Nucleotide sequence coding for the respiratory NADH dehydrogenase of Escherichia coli. UUG initiation codon. , 1981, European journal of biochemistry.
[34] T. Bauchop,et al. The growth of micro-organisms in relation to their energy supply. , 1960, Journal of general microbiology.
[35] W. Hempfling,et al. Effects of varying the carbon source limiting growth on yield and maintenance characteristics of Escherichia coli in continuous culture , 1975, Journal of bacteriology.