Non-linear static–dynamic finite element formulation for composite shells
暂无分享,去创建一个
[1] George J. Simitses,et al. Dynamic Stability of Suddenly Loaded Structures , 1989 .
[2] J. C. Simo,et al. A new energy and momentum conserving algorithm for the non‐linear dynamics of shells , 1994 .
[3] A. H. Marchertas,et al. Nonlinear Finite-Element Method for Plates and Its Application to Dynamic Response of Reactor Fuel Subassemblies , 1974 .
[4] T. Y. Yang,et al. Nonlinear dynamic analysis with a 48 d.o.f. curved thin shell element , 1985 .
[5] O. C. Zienkiewicz,et al. A unified set of single step algorithms part 3: The beta-m method, a generalization of the Newmark scheme , 1985 .
[6] R. H. Korkegi,et al. The hypersonic slipper bearing - A test track problem. , 1969 .
[7] J. Reddy. A Simple Higher-Order Theory for Laminated Composite Plates , 1984 .
[8] Anthony N. Palazotto,et al. Non-linear free vibrations of symmetrically laminated, slightly compressible cylindrical shell panels , 1992 .
[9] Anthony N. Palazotto,et al. Nonlinear Analysis of Shell Structures , 1992 .
[10] Anthony N. Palazotto,et al. Nonlinear finite element analysis of thick composite plates using cubic spline functions , 1985 .
[11] J. N. Reddy,et al. A higher-order shear deformation theory of laminated elastic shells , 1985 .
[12] Anthony N. Palazotto,et al. Polar Decomposition Theory in Nonlinear Analyses of Solids and Structures , 1995 .
[13] A. Bhimaraddi,et al. A higher order theory for free vibration analysis of circular cylindrical shells , 1984 .
[14] Anthony N. Palazotto,et al. Nonlinear displacement-based finite-element analyses of composite shells: a new total Lagrangian formulation , 1995 .
[15] A. Palazotto,et al. NON-LINEAR FINITE ELEMENT ANALYSIS OF ISOTROPIC AND COMPOSITE SHELLS BY A TOTAL LAGRANGIAN DECOMPOSITION SCHEME , 1996 .
[16] Anthony N. Palazotto,et al. Nonlinear Dynamics of Simple Shell Model with Chaotic Snapping Behavior , 1995 .
[17] Anthony N. Palazotto,et al. Nonlinear Dynamic Finite Element Analysis of Composite Cylindrical Shells Considering Large Rotations , 1999 .
[18] Edward L. Wilson,et al. Dynamic finite element analysis of arbitrary thin shells , 1971 .
[19] R. Souchet. Concerning the polar decomposition of the deformation gradien , 1993 .
[20] Marcelo Epstein,et al. Nonlinear analysis of multilayered shells , 1977 .
[21] Nonlinear dynamic response of anisotropic, arbitrarily laminated shell panels: An asymptotic analysis , 1991 .
[22] Anthony N. Palazotto,et al. On the finite element analysis of non-linear vibration for cylindrical shells with high-order shear deformation theory , 1991 .
[23] M. Di Sciuva,et al. An Improved Shear-Deformation Theory for Moderately Thick Multilayered Anisotropic Shells and Plates , 1987 .
[24] Antonio Miravete,et al. Practical Analysis of COMPOSITE LAMINATES , 2018 .
[25] Anthony N. Palazotto,et al. Large strain analysis of beams and arches undergoing large rotations , 1998 .
[26] J. Whitney,et al. Shear Deformation in Heterogeneous Anisotropic Plates , 1970 .
[27] J. C. Simo,et al. On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non‐linear dynamics , 1992 .
[28] L. E. Malvern. Introduction to the mechanics of a continuous medium , 1969 .