Structure and elasticity of phlogopite under compression: Geophysical implications

[1]  D. Mainprice,et al.  Unusually large shear wave anisotropy for chlorite in subduction zone settings , 2014 .

[2]  C. I. Sainz-Díaz,et al.  Computational study of the elastic behavior of the 2M1 muscovite-paragonite series , 2013 .

[3]  D. Frost,et al.  The elasticity of lawsonite at high pressure and the origin of low velocity layers in subduction zones , 2012 .

[4]  M. Mookherjee,et al.  The low velocity layer in subduction zone: Structure and elasticity of glaucophane at high pressures , 2012 .

[5]  A. Tommasi,et al.  Plastic deformation and development of antigorite crystal preferred orientation in high-pressure serpentinites , 2012 .

[6]  G. Abers,et al.  Subduction Factory 5: Unusually low Poisson's ratios in subduction zones from elastic anisotropy of peridotite , 2012 .

[7]  H. Jung Seismic anisotropy produced by serpentine in mantle wedge , 2011 .

[8]  N. Rotiroti,et al.  On the crystal chemistry and elastic behavior of a phlogopite 3T , 2011, PCM 2011.

[9]  M. Mookherjee,et al.  Trench parallel anisotropy and large delay times: Elasticity and anisotropy of antigorite at high pressures , 2011 .

[10]  W. Griffin,et al.  The continental lithosphere–asthenosphere boundary: Can we sample it? , 2010 .

[11]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[12]  C. I. Sainz-Díaz,et al.  High-pressure behavior of 2M1 muscovite , 2010 .

[13]  Jay D. Bass,et al.  Elasticity of antigorite, seismic detection of serpentinites, and anisotropy in subduction zones , 2009 .

[14]  D. Mainprice,et al.  Mica, deformation fabrics and the seismic properties of the continental crust , 2009 .

[15]  K. Michibayashi,et al.  Trench-parallel anisotropy produced by serpentine deformation in the hydrated mantle wedge , 2009, Nature.

[16]  S. Zanchetta,et al.  Alkali in phlogopite and amphibole and their effects on phase relations in metasomatized peridotites: a high-pressure study , 2009 .

[17]  J. Tsuchiya,et al.  Elastic properties of δ-AlOOH under pressure: First principles investigation , 2009 .

[18]  Alan G. Jones,et al.  The elusive lithosphere–asthenosphere boundary (LAB) beneath cratons , 2009 .

[19]  J. Jackson,et al.  Seismic evidence for orthopyroxene enrichment in the continental lithosphere , 2008 .

[20]  J. Rodgers,et al.  Ab initio elastic properties of talc from 0 to 12 GPa: Interpretation of seismic velocities at mantle pressures and prediction of auxetic behaviour at low pressure , 2008 .

[21]  W. Strauch,et al.  Seismic tomography and earthquake locations in the Nicaraguan and Costa Rican upper mantle , 2008 .

[22]  J. Nakajima,et al.  Tomographic evidence for hydrated oceanic crust of the Pacific slab beneath northeastern Japan: Implications for water transportation in subduction zones , 2008 .

[23]  J. Tsuchiya,et al.  Vibrational properties of δ-AlOOH under pressure , 2008 .

[24]  L. Stixrude,et al.  The 10 Å phase at high pressure by first principles calculations and implications for the petrology of subduction zones , 2007 .

[25]  A. Authier,et al.  Physical properties of crystals , 2007 .

[26]  Lars Stixrude,et al.  Proton behaviour, structure and elasticity of serpentine at high-pressure , 2007 .

[27]  T. Duffy,et al.  Single-crystal elasticity of brucite, Mg(OH)2, to 15 GPa by Brillouin scattering , 2006 .

[28]  G. Abers,et al.  Unusual mantle Poisson's ratio, subduction, and crustal structure in central Alaska , 2006 .

[29]  C. Chon,et al.  Structural changes and oxidation of ferroan phlogopite with increasing temperature: in situ neutron powder diffraction and Fourier transform infrared spectroscopy , 2006 .

[30]  G. Zandt,et al.  Depleted lithosphere, cold, trapped asthenosphere, and frozen melt puddles above the flat slab in central Chile and Argentina , 2006 .

[31]  L. Stixrude,et al.  High-pressure proton disorder in brucite , 2004 .

[32]  P. Coveney,et al.  Density-functional-theory-based study of the dehydroxylation behavior of aluminous dioctahedral 2:1 layer-type clay minerals , 2004 .

[33]  P. Fumagalli,et al.  A single-crystal study on the pressure behavior of phlogopite and petrological implications , 2004 .

[34]  Gregory C. Beroza,et al.  High-resolution subducting-slab structure beneath northern Honshu, Japan, revealed by double-difference tomography , 2004 .

[35]  G. Abers,et al.  Imaging the transition from Aleutian subduction to Yakutat collision in central Alaska, with local earthquakes and active source data , 2003 .

[36]  A. Sani,et al.  Equation of state and compressibility of phlogopite by in-situ high-pressure X-ray powder diffraction , 2003 .

[37]  L. Stixrude Talc under tension and compression: Spinodal instability, elasticity, and structure , 2002 .

[38]  Lars Stixrude,et al.  First-principles study of illite–smectite and implications for clay mineral systems , 2002, Nature.

[39]  G. Redhammer,et al.  Single-crystal structure refinements and crystal chemistry of synthetic trioctahedral micas KM3(Al3+,Si4+)4O10(OH)2, where M = Ni2+, Mg2+, Co2+, Fe2+, or Al3+ , 2002 .

[40]  M. Mookherjee,et al.  A high-temperature Fourier transform infrared study of the interlayer and Si–O-stretching region in phengite-2M1 , 2002, Clay Minerals.

[41]  R. Trønnes Stability range and decomposition of potassic richterite and phlogopite end members at 5–15 GPa , 2002 .

[42]  Renata M. Wentzcovitch,et al.  High‐pressure elastic properties of major materials of Earth's mantle from first principles , 2001 .

[43]  M. Mookherjee,et al.  Thermal response of structure and hydroxyl ion of phengite-2M 1 : an in situ neutron diffraction and FTIR study , 2001 .

[44]  R. Angel,et al.  Crystal structures and compressibilities of synthetic 2M1 and 3T phengite micas , 2000 .

[45]  J. Konzett,et al.  The Stability of Hydrous Potassic Phases in Lherzolitic Mantle—an Experimental Study to 9.5 GPa in Simplified and Natural Bulk Compositions , 1999 .

[46]  G. Kresse,et al.  From ultrasoft pseudopotentials to the projector augmented-wave method , 1999 .

[47]  Kiminori Sato,et al.  PHASE RELATIONS OF NATURAL PHLOGOPITE WITH AND WITHOUT ENSTATITE UP TO 8 GPA : IMPLICATION FOR MANTLE METASOMATISM , 1997 .

[48]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[49]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[50]  G. Kresse,et al.  Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set , 1996 .

[51]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[52]  P. Ulmer,et al.  Phase relations of a natural MARID composition and implications for MARID genesis, lithospheric melting and mantle metasomatism , 1993 .

[53]  Jackson,et al.  Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. , 1992, Physical review. B, Condensed matter.

[54]  A. Thompson Water in the Earth's upper mantle , 1992, Nature.

[55]  R. Jeanloz,et al.  Static compression of Ca(OH)2 at room temperature: Observations of amorphization and equation of sta , 1990 .

[56]  David Mainprice,et al.  A FORTRAN program to calculate seismic anisotropy from the lattice preferred orientation of minerals , 1990 .

[57]  F. G. Waters A suggested origin of MARID xenoliths in kimberlites by high pressure crystallization of an ultrapotassic rock such as lamproite , 1987 .

[58]  J. Perdew,et al.  Accurate and simple density functional for the electronic exchange energy: Generalized gradient approximation. , 1986, Physical review. B, Condensed matter.

[59]  T. Duffy,et al.  Elasticity of enstatite and its relationship to crystal structure , 1986 .

[60]  T. Sekine,et al.  Phase relationships in the system KAlSiO4-Mg2SiO4-SiO2-H2O as a model for hybridization between hydrous siliceous melts and peridotite , 1982 .

[61]  T. Sekine,et al.  The formation of mantle phlogopite in subduction zone hybridization , 1982 .

[62]  D. Bailey Mantle metasomatism—continuing chemical change within the Earth , 1982, Nature.

[63]  Robert M. Hazen,et al.  The crystal structures and compressibilities of layer minerals at high pressure; II, Phlogopite and chlorite , 1978 .

[64]  F. Birch,et al.  Finite strain isotherm and velocities for single‐crystal and polycrystalline NaCl at high pressures and 300°K , 1978 .

[65]  H. Monkhorst,et al.  SPECIAL POINTS FOR BRILLOUIN-ZONE INTEGRATIONS , 1976 .

[66]  J. H. Rayner,et al.  The crystal structure of phlogopite by neutron diffraction , 1974, Mineralogical Magazine.

[67]  Joseph Callaway,et al.  Inhomogeneous Electron Gas , 1973 .

[68]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[69]  H. Eugster,et al.  Phlogopite synthesis and stability range , 1954 .

[70]  B. Militzer,et al.  First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy , 2011 .

[71]  D. Mainprice,et al.  Seismic Anisotropy of Subduction Zone Minerals–Contribution of Hydrous Phases , 2009 .

[72]  G. Zandt,et al.  Upper mantle structure in the south central Chilean subduction zone (30° to 36°S) , 2005 .

[73]  J. Tsuchiya,et al.  First-principles study of hydrogen bond symmetrization of phase D under high pressure , 2005 .

[74]  Carlo Maria Gramaccioli,et al.  Energy Modelling in Minerals , 2002 .

[75]  Kiminori Sato,et al.  Phase relations of phlogopite with and without enstatite up to 8 GPa : implication to potassic magmatism and mantle metasomatism , 1996 .

[76]  Y. Tatsumi,et al.  Phlogopite and K-amphibole in the upper mantle: Implication for magma genesis in subduction zones , 1990 .

[77]  J. S. Weaver Abstracts of articles to be published in the Journal of Physics and Chemistry of SolidsApplication of finite strain theory to non-cubic crystals , 1976 .

[78]  G. Davies,et al.  Effective elastic moduli under hydrostatic stress—I. quasi-harmonic theory , 1974 .

[79]  Y. Syono,et al.  Stability of phlogopite at high pressures and possible presence of phlogopite in the earth's upper mantle , 1967 .

[80]  J. Crocker,et al.  References and Notes Supporting Online Material Materials and Methods References Movies S1 and S2 the Subduction Zone Flow Field from Seismic Anisotropy: a Global View , 2022 .