The conversion of palm oil to hydrocarbons using a shape selective zeolite catalyst is reported in this work. Palm oil was passed over HZSM-5 catalyst in a fixed bed micro-reactor and the reactor was operated at atmospheric pressure, a temperature range of 360 to 420°C and weight hourly space velocity (WHSV) of 2 to 4 h−1. The main objective was to study the effect of reaction temperature and oil space velocity on the conversion and selectivity of gasoline range hydrocarbons. The results show that 40 to 70wt% of the palm oil can be converted to aromatics and hydrocarbons in the gasoline, diesel and kerosene range, light gases, coke and water. The maximum gasoline range hydrocarbons yield of 40wt% of total product formed was obtained at 400°C and 2 h−1 space velocity.
On decrit dans ce travail la conversion de l'huile de palme en hydrocarbures a l'aide d'un catalyseur de zeolite selectif par rapport a la forme. L'huile de palme a ete passee sur un catalyseur HZSM-5 dans un microreacteur a lit fixe, qui a fonctionne a la pression atmospherique, avec des temperatures de 360 - 420CC et des poids par poids par heure (PPH) de 2 - 4 h−1. Le principal objectif etait d'etudier l'effet de la temperature de reaction et de la vitesse spatiale de l'huile sur la conversion et la selectivite des hydrocarbures de la gamme des essences. Les resultats montrent que 40 - 70% en poids de l'huile de palme peuvent etre convertis en aromatiques et hydrocarbures dans la gamme des essences, des diesels et des kerosenes, dans les gaz legers, le coke et l'eau. Le rendement maximal des hydrocarbures de la gamme des essences representant 40% en poids du produit total forme a ete obtenu a 400°C et a la vitesse spatiale de 2 h−1.
[1]
N. Bakhshi,et al.
Catalytic upgrading of biomass‐derived oils to transportation fuels and chemicals
,
1991
.
[2]
Mohd Ambar Yarmo,et al.
Transesterification products from the metathesis reaction of palm oil
,
1992
.
[3]
R. Idem,et al.
Catalytic conversion of canola oil to fuels and chemicals: roles of catalyst acidity, basicity and shape selectivity on product distribution
,
1997
.
[4]
J. Graille,et al.
Biofuels from catalytic cracking of tropical vegetable oils
,
1993
.
[5]
P. B. Weisz,et al.
Catalytic Production of High-Grade Fuel (Gasoline) from Biomass Compounds by Shape-Selective Catalysis
,
1979,
Science.
[6]
Clarence Dayton Chang,et al.
The conversion of methanol and other O-compounds to hydrocarbons over zeolite catalysts: II. Pressure effects
,
1977
.
[7]
N. Bakhshi,et al.
Catalytic conversion of canola oil to fuels and chemical feedstocks Part I. Effect of process conditions on the performance of HZSM‐5 catalyst
,
1986
.
[8]
N. Bakhshi,et al.
Catalytic conversion of canola oil to fuels and chemical feedstocks: Part II Effect of co‐feeding steam on the performance of HZSM‐5 catalyst
,
1986
.
[9]
N. Bakhshi,et al.
Catalytic conversion of canola oil to fuels and chemicals over various cracking catalysts
,
1995
.
[10]
N. Bakhshi,et al.
Studies on the Catalytic Conversion of Canola Oil to Hydrocarbons: Influence of Hybrid Catalysts and Steam
,
1995
.