Braid group symmetries on quasi-split $\imath$quantum groups via $\imath$Hall algebras
暂无分享,去创建一个
[1] S. Kolb,et al. Braid group actions on coideal subalgebras of quantized enveloping algebras , 2011, 1102.4185.
[2] J. Xiao. Drinfeld Double and Ringel–Green Theory of Hall Algebras , 1997 .
[3] S. Kolb. Quantum symmetric Kac–Moody pairs , 2012, 1207.6036.
[4] Weiqiang Wang,et al. Serre–Lusztig relations for ı quantum groups II , 2021 .
[5] Weiqiang Wang,et al. Canonical bases arising from quantum symmetric pairs , 2016, 1610.09271.
[6] Claus Michael Ringel,et al. Representations of graphs and algebras , 1974 .
[7] P. Podles,et al. Introduction to Quantum Groups , 1998 .
[8] Ya. S. Soibel'man. Some applications of the quantum Weyl groups , 1990 .
[9] J. Green. Hall algebras, hereditary algebras and quantum groups , 1995 .
[10] Coideal Subalgebras and Quantum Symmetric Pairs , 2001, math/0103228.
[11] Liam Dobson. Braid group actions for quantum symmetric pairs of type AIII/AIV , 2019, 1909.11215.
[12] M. Gorsky. Semi-derived and derived Hall algebras for stable categories , 2014, 1409.6798.
[13] C. Geiss,et al. Quivers with relations for symmetrizable Cartan matrices I: Foundations , 2014, 1410.1403.
[14] P. Baseilhac,et al. BRAID GROUP ACTION AND ROOT VECTORS FOR THE q-ONSAGER ALGEBRA , 2017, Transformation Groups.
[15] Weiqiang Wang,et al. A Drinfeld type presentation of affine ıquantum groups I: Split ADE type , 2021, Advances in Mathematics.
[16] M. Bergh,et al. On the Double of the Hall Algebra of a Quiver , 1999 .
[17] E. Ragoucy,et al. SYMMETRIES AND INVARIANTS OF TWISTED QUANTUM ALGEBRAS AND ASSOCIATED POISSON ALGEBRAS , 2007, math/0701902.
[18] Weiqiang Wang,et al. A New Approach to Kazhdan-lusztig Theory of Type $b$ Via Quantum Symmetric Pairs , 2013, 1310.0103.
[19] H. H. Andersen,et al. Quantum groups at roots of ±1 , 1996 .
[20] C. Ringel. PBW-bases of quantum groups. , 1996 .
[21] Weiqiang Wang,et al. Hall Algebras and Quantum Symmetric Pairs II: Reflection Functors , 2019, Communications in Mathematical Physics.
[22] Weiqiang Wang,et al. Formulae of ı-divided powers in Uq(sl2) , 2017, Journal of Pure and Applied Algebra.
[23] Hecke Algebras With Unequal Parameters , 2002, math/0208154.
[24] B. Toën. Derived Hall algebras , 2005 .
[25] G. Letzter. Symmetric Pairs for Quantized Enveloping Algebras , 1999 .
[26] Ming Lu,et al. Hall algebras and quantum symmetric pairs I: Foundations , 2019, Proceedings of the London Mathematical Society.
[27] N. Reshetikhin,et al. q-Weyl group and a multiplicative formula for universalR-matrices , 1990 .
[28] George Lusztig,et al. Canonical bases arising from quantized enveloping algebras , 1990 .
[29] Hall algebras associated to triangulated categories , 2006, math/0608144.
[30] Fang Li. MODULATION AND NATURAL VALUED QUIVER OF AN ALGEBRA , 2012, 1406.7218.
[31] T. Bridgeland. Quantum groups via Hall algebras of complexes , 2011, 1111.0745.
[32] Claus Michael Ringel,et al. Hall algebras and quantum groups , 1990 .