Braid group symmetries on quasi-split $\imath$quantum groups via $\imath$Hall algebras

We establish automorphisms with closed formulas on quasi-split ıquantum groups of symmetric Kac-Moody type associated to restricted Weyl groups. The proofs are carried out in the framework of ıHall algebras and reflection functors, thanks to the ıHall algebra realization of ıquantum groups in our previous work. Several quantum binomial identities arising along the way are established.

[1]  S. Kolb,et al.  Braid group actions on coideal subalgebras of quantized enveloping algebras , 2011, 1102.4185.

[2]  J. Xiao Drinfeld Double and Ringel–Green Theory of Hall Algebras , 1997 .

[3]  S. Kolb Quantum symmetric Kac–Moody pairs , 2012, 1207.6036.

[4]  Weiqiang Wang,et al.  Serre–Lusztig relations for ı quantum groups II , 2021 .

[5]  Weiqiang Wang,et al.  Canonical bases arising from quantum symmetric pairs , 2016, 1610.09271.

[6]  Claus Michael Ringel,et al.  Representations of graphs and algebras , 1974 .

[7]  P. Podles,et al.  Introduction to Quantum Groups , 1998 .

[8]  Ya. S. Soibel'man Some applications of the quantum Weyl groups , 1990 .

[9]  J. Green Hall algebras, hereditary algebras and quantum groups , 1995 .

[10]  Coideal Subalgebras and Quantum Symmetric Pairs , 2001, math/0103228.

[11]  Liam Dobson Braid group actions for quantum symmetric pairs of type AIII/AIV , 2019, 1909.11215.

[12]  M. Gorsky Semi-derived and derived Hall algebras for stable categories , 2014, 1409.6798.

[13]  C. Geiss,et al.  Quivers with relations for symmetrizable Cartan matrices I: Foundations , 2014, 1410.1403.

[14]  P. Baseilhac,et al.  BRAID GROUP ACTION AND ROOT VECTORS FOR THE q-ONSAGER ALGEBRA , 2017, Transformation Groups.

[15]  Weiqiang Wang,et al.  A Drinfeld type presentation of affine ıquantum groups I: Split ADE type , 2021, Advances in Mathematics.

[16]  M. Bergh,et al.  On the Double of the Hall Algebra of a Quiver , 1999 .

[17]  E. Ragoucy,et al.  SYMMETRIES AND INVARIANTS OF TWISTED QUANTUM ALGEBRAS AND ASSOCIATED POISSON ALGEBRAS , 2007, math/0701902.

[18]  Weiqiang Wang,et al.  A New Approach to Kazhdan-lusztig Theory of Type $b$ Via Quantum Symmetric Pairs , 2013, 1310.0103.

[19]  H. H. Andersen,et al.  Quantum groups at roots of ±1 , 1996 .

[20]  C. Ringel PBW-bases of quantum groups. , 1996 .

[21]  Weiqiang Wang,et al.  Hall Algebras and Quantum Symmetric Pairs II: Reflection Functors , 2019, Communications in Mathematical Physics.

[22]  Weiqiang Wang,et al.  Formulae of ı-divided powers in Uq(sl2) , 2017, Journal of Pure and Applied Algebra.

[23]  Hecke Algebras With Unequal Parameters , 2002, math/0208154.

[24]  B. Toën Derived Hall algebras , 2005 .

[25]  G. Letzter Symmetric Pairs for Quantized Enveloping Algebras , 1999 .

[26]  Ming Lu,et al.  Hall algebras and quantum symmetric pairs I: Foundations , 2019, Proceedings of the London Mathematical Society.

[27]  N. Reshetikhin,et al.  q-Weyl group and a multiplicative formula for universalR-matrices , 1990 .

[28]  George Lusztig,et al.  Canonical bases arising from quantized enveloping algebras , 1990 .

[29]  Hall algebras associated to triangulated categories , 2006, math/0608144.

[30]  Fang Li MODULATION AND NATURAL VALUED QUIVER OF AN ALGEBRA , 2012, 1406.7218.

[31]  T. Bridgeland Quantum groups via Hall algebras of complexes , 2011, 1111.0745.

[32]  Claus Michael Ringel,et al.  Hall algebras and quantum groups , 1990 .