Information Extraction from Electronic Medical Records Using Multitask Recurrent Neural Network with Contextual Word Embedding

[1]  Carol Friedman,et al.  Research Paper: A General Natural-language Text Processor for Clinical Radiology , 1994, J. Am. Medical Informatics Assoc..

[2]  Jürgen Schmidhuber,et al.  Long Short-Term Memory , 1997, Neural Computation.

[3]  John F. Hurdle,et al.  Extracting Information from Textual Documents in the Electronic Health Record: A Review of Recent Research , 2008, Yearbook of Medical Informatics.

[4]  Jason Weston,et al.  Natural Language Processing (Almost) from Scratch , 2011, J. Mach. Learn. Res..

[5]  Xiaolong Wang,et al.  Drug Name Recognition: Approaches and Resources , 2015, Inf..

[6]  Alan R. Aronson,et al.  An overview of MetaMap: historical perspective and recent advances , 2010, J. Am. Medical Informatics Assoc..

[7]  Yoshua Bengio,et al.  Random Search for Hyper-Parameter Optimization , 2012, J. Mach. Learn. Res..

[8]  Ming Yang,et al.  Entity recognition from clinical texts via recurrent neural network , 2017, BMC Medical Informatics and Decision Making.

[9]  Abeed Sarker,et al.  Portable automatic text classification for adverse drug reaction detection via multi-corpus training , 2015, J. Biomed. Informatics.

[10]  Joel D. Martin,et al.  Machine-learned solutions for three stages of clinical information extraction: the state of the art at i2b2 2010 , 2011, J. Am. Medical Informatics Assoc..

[11]  David S. Wishart,et al.  DrugBank 4.0: shedding new light on drug metabolism , 2013, Nucleic Acids Res..

[12]  S. Hebbring The challenges, advantages and future of phenome-wide association studies , 2014, Immunology.

[13]  Maryam Habibi,et al.  Deep learning with word embeddings improves biomedical named entity recognition , 2017, Bioinform..

[14]  Hongfang Liu,et al.  Journal of Biomedical Informatics , 2022 .

[15]  I. Solti,et al.  Developing and evaluating an automated appendicitis risk stratification algorithm for pediatric patients in the emergency department , 2013, Journal of the American Medical Informatics Association : JAMIA.

[16]  David L Buckeridge,et al.  Accuracy of using automated methods for detecting adverse events from electronic health record data: a research protocol , 2015, Implementation Science.

[17]  Chengjie Sun,et al.  LSTM-CRF for Drug-Named Entity Recognition , 2017, Entropy.

[18]  Sunghwan Sohn,et al.  Mayo clinical Text Analysis and Knowledge Extraction System (cTAKES): architecture, component evaluation and applications , 2010, J. Am. Medical Informatics Assoc..

[19]  Peter Szolovits,et al.  MIMIC-III, a freely accessible critical care database , 2016, Scientific Data.

[20]  Hongfei Lin,et al.  An attention‐based BiLSTM‐CRF approach to document‐level chemical named entity recognition , 2018, Bioinform..

[21]  Massimo Piccardi,et al.  Recurrent neural networks with specialized word embeddings for health-domain named-entity recognition , 2017, J. Biomed. Informatics.

[22]  Jingqi Wang,et al.  Enhancing Clinical Concept Extraction with Contextual Embedding , 2019, J. Am. Medical Informatics Assoc..

[23]  Shuying Shen,et al.  2010 i2b2/VA challenge on concepts, assertions, and relations in clinical text , 2011, J. Am. Medical Informatics Assoc..