Control Principles of Complex Networks

A reflection of our ultimate understanding of a complex system is our ability to control its behavior. Typically, control has multiple prerequisites: It requires an accurate map of the network that governs the interactions between the system's components, a quantitative description of the dynamical laws that govern the temporal behavior of each component, and an ability to influence the state and temporal behavior of a selected subset of the components. With deep roots in nonlinear dynamics and control theory, notions of control and controllability have taken a new life recently in the study of complex networks, inspiring several fundamental questions: What are the control principles of complex systems? How do networks organize themselves to balance control with functionality? To address these here we review recent advances on the controllability and the control of complex networks, exploring the intricate interplay between a system's structure, captured by its network topology, and the dynamical laws that govern the interactions between the components. We match the pertinent mathematical results with empirical findings and applications. We show that uncovering the control principles of complex systems can help us explore and ultimately understand the fundamental laws that govern their behavior.

[1]  M. Newman,et al.  Random graphs with arbitrary degree distributions and their applications. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[2]  H. Pohjanpalo System identifiability based on the power series expansion of the solution , 1978 .

[3]  F. Fairman Introduction to dynamic systems: Theory, models and applications , 1979, Proceedings of the IEEE.

[4]  Jie Sun,et al.  Controllability transition and nonlocality in network control. , 2013, Physical review letters.

[5]  Donald E. Kirk,et al.  Optimal control theory : an introduction , 1970 .

[6]  D. Luenberger An introduction to observers , 1971 .

[7]  José M. F. Moura,et al.  Distributing the Kalman Filter for Large-Scale Systems , 2007, IEEE Transactions on Signal Processing.

[8]  Antonio Scala,et al.  Networks of Networks: The Last Frontier of Complexity , 2014 .

[9]  Gildas Besancon,et al.  Nonlinear observers and applications , 2007 .

[10]  Maria Pia Saccomani,et al.  Parameter identifiability of nonlinear systems: the role of initial conditions , 2003, Autom..

[11]  October I Physical Review Letters , 2022 .

[12]  J. Pearson,et al.  Structural controllability of multiinput linear systems , 1976 .

[13]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[14]  H Larralde,et al.  Phase transitions in systems of self-propelled agents and related network models. , 2007, Physical review letters.

[15]  Alessandro Vespignani,et al.  Epidemic spreading in scale-free networks. , 2000, Physical review letters.

[16]  T. Akutsu,et al.  Minimum dominating set-based methods for analyzing biological networks. , 2016, Methods.

[17]  B. Fiedler,et al.  Dynamics and control at feedback vertex sets. II: a faithful monitor to determine the diversity of molecular activities in regulatory networks. , 2013, Journal of theoretical biology.

[18]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[19]  C. Moog,et al.  Algebraic Methods for Nonlinear Control Systems , 2006 .

[20]  J. Slotine,et al.  Few inputs can reprogram biological networks , 2011, Nature.

[21]  Usman A. Khan,et al.  A sensor placement and network design paradigm for future smart grids , 2011, 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP).

[22]  Soummya Kar,et al.  A structured systems approach for optimal actuator-sensor placement in linear time-invariant systems , 2013, 2013 American Control Conference.

[23]  Mohamad Sawan,et al.  IEEE Transactions on Circuits and Systems—II:Express Briefs publication information , 2018, IEEE Transactions on Circuits and Systems II: Express Briefs.

[24]  Tamás Vicsek,et al.  Controlling edge dynamics in complex networks , 2011, Nature Physics.

[25]  R. Bellman,et al.  On structural identifiability , 1970 .

[26]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[28]  John Lygeros,et al.  On Submodularity and Controllability in Complex Dynamical Networks , 2014, IEEE Transactions on Control of Network Systems.

[29]  Endre Csóka,et al.  Core percolation on complex networks , 2012, Physical review letters.

[30]  Yan Zhang,et al.  The value of peripheral nodes in controlling multilayer networks , 2016, Physical review. E.

[31]  J. Webster,et al.  Wiley Encyclopedia of Electrical and Electronics Engineering , 2010 .

[32]  L. Chua,et al.  Application of graph theory to the synchronization in an array of coupled nonlinear oscillators , 1995 .

[33]  M. Mézard,et al.  The Bethe lattice spin glass revisited , 2000, cond-mat/0009418.

[34]  Ljupco Kocarev,et al.  Estimating topology of networks. , 2006, Physical review letters.

[35]  Eduardo D. Sontag,et al.  I/O equations for nonlinear systems and observation spaces , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[36]  Bernard Friedland,et al.  Advanced Control System Design , 1996 .

[37]  Albert-László Barabási,et al.  Controllability of complex networks , 2011, Nature.

[38]  R. D. Johnston,et al.  Determination of the generic rank of structural matrices , 1984 .

[39]  A. Barabasi,et al.  Controllability analysis of the directed human protein interaction network identifies disease genes and drug targets , 2015, Proceedings of the National Academy of Sciences.

[40]  Jinde Cao,et al.  On Pinning Synchronization of Directed and Undirected Complex Dynamical Networks , 2010, IEEE Transactions on Circuits and Systems I: Regular Papers.

[41]  E. Kandel,et al.  Proceedings of the National Academy of Sciences of the United States of America. Annual subject and author indexes. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[42]  Alexandre Sedoglavic A Probabilistic Algorithm to Test Local Algebraic Observability in Polynomial Time , 2002, J. Symb. Comput..

[43]  Guang-Hong Yang,et al.  Adaptive Pinning Control of Deteriorated Nonlinear Coupling Networks With Circuit Realization , 2012, IEEE Transactions on Neural Networks and Learning Systems.

[44]  Michael Small,et al.  Contraction stability and transverse stability of synchronization in complex networks. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Ferdinand Svaricek,et al.  Strong structural controllability of linear systems revisited , 2011, IEEE Conference on Decision and Control and European Control Conference.

[46]  Stefan Wuchty,et al.  Controllability in protein interaction networks , 2014, Proceedings of the National Academy of Sciences.

[47]  A Valizadeh,et al.  Effect of synaptic plasticity on the structure and dynamics of disordered networks of coupled neurons. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[48]  Manuel Ferreira Networks of Networks: The Last Frontier of Complexity-A Book Review , 2014 .

[49]  John Calsamiglia,et al.  Growth of graph states in quantum networks , 2012, 1208.0710.

[50]  Michael J. Todd,et al.  Mathematical programming , 2004, Handbook of Discrete and Computational Geometry, 2nd Ed..

[51]  Celso Grebogi,et al.  Using small perturbations to control chaos , 1993, Nature.

[52]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[53]  Guanrong Chen,et al.  Pinning control and synchronization on complex dynamical networks , 2014, International Journal of Control, Automation and Systems.

[54]  A. Linnemann A further simplification in the proof of the structural controllability theorem , 1986 .

[55]  Lao Songyang,et al.  Enhancing Complex Network Controllability by Rewiring Links , 2013, 2013 Third International Conference on Intelligent System Design and Engineering Applications.

[56]  M. Hasler,et al.  Connection Graph Stability Method for Synchronized Coupled Chaotic Systems , 2004 .

[57]  Thomas K. Berger,et al.  A synaptic organizing principle for cortical neuronal groups , 2011, Proceedings of the National Academy of Sciences.

[58]  K. Norlen 1 EVA : Extraction , Visualization and Analysis of the Telecommunications and Media Ownership Network , 2002 .

[59]  Michael J. Watts,et al.  IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS Publication Information , 2020, IEEE Transactions on Neural Networks and Learning Systems.

[60]  Z. Wang,et al.  The structure and dynamics of multilayer networks , 2014, Physics Reports.

[61]  Réka Albert,et al.  Cell Fate Reprogramming by Control of Intracellular Network Dynamics , 2014, PLoS Comput. Biol..

[62]  L. Ljung,et al.  Model structure identifiability and persistence of excitation , 1990, 29th IEEE Conference on Decision and Control.

[63]  J. Slotine,et al.  Spectrum of controlling and observing complex networks , 2015, Nature Physics.

[64]  A. Tustin Automatic Control , 1951, Nature.

[65]  S. Perseguers,et al.  Quantum random networks , 2009, 0907.3283.

[66]  Albert-László Barabási,et al.  Effect of correlations on network controllability , 2012, Scientific Reports.

[67]  Chi-Ying Tsui,et al.  IEEE Transactions on Circuits and Systems—I:Regular Papers information for authors , 2018, IEEE Transactions on Circuits and Systems I: Regular Papers.

[68]  Soummya Kar,et al.  A Framework for Structural Input/Output and Control Configuration Selection in Large-Scale Systems , 2013, IEEE Transactions on Automatic Control.

[69]  Tatsuya Akutsu,et al.  Dominating scale-free networks with variable scaling exponent: heterogeneous networks are not difficult to control , 2012 .

[70]  Zoltán Toroczkai,et al.  Continuous extension of the geometric control method , 1996 .

[71]  M. Fliess,et al.  Nonlinear observability, identifiability, and persistent trajectories , 1991, [1991] Proceedings of the 30th IEEE Conference on Decision and Control.

[72]  Maciej Lewenstein,et al.  Enhancement of Entanglement Percolation in Quantum Networks via Lattice Transformations , 2008, 0807.1118.

[73]  John Lygeros,et al.  Optimal Sensor and Actuator Placement in Complex Dynamical Networks , 2013, ArXiv.

[74]  Somesh Jha,et al.  Modelling and control of cell reaction networks , 2001 .

[75]  Robin J. Evans,et al.  Control of chaos: Methods and applications in engineering, , 2005, Annu. Rev. Control..

[76]  Mehran Mesbahi,et al.  Controllability and Observability of Network-of-Networks via Cartesian Products , 2014, IEEE Transactions on Automatic Control.

[77]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[78]  4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing, CAMSAP 2011, San Juan, PR, USA, December 13-16, 2011 , 2011, CAMSAP.

[79]  Eduardo D. Sontag,et al.  Diagonal stability of a class of cyclic systems and its connection with the secant criterion , 2006, Autom..

[80]  H. Kalmus Biological Cybernetics , 1972, Nature.

[81]  Guanrong Chen,et al.  Pinning control of scale-free dynamical networks , 2002 .

[82]  Zahra Aminzare,et al.  Synchronization of Diffusively-Connected Nonlinear Systems: Results Based on Contractions with Respect to General Norms , 2014, IEEE Transactions on Network Science and Engineering.

[83]  Roy M. Howard,et al.  Linear System Theory , 1992 .

[84]  Sean N. Brennan,et al.  Observability and Controllability of Nonlinear Networks: The Role of Symmetry , 2013, Physical review. X.

[85]  M. Hasler,et al.  Synchronization in asymmetrically coupled networks with node balance. , 2006, Chaos.

[86]  Eduardo D Sontag,et al.  Network reconstruction based on steady-state data. , 2008, Essays in biochemistry.

[87]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[88]  Thilo Gross,et al.  Adaptive Networks: Theory, Models and Applications , 2009 .

[89]  Daizhan Cheng,et al.  A Survey on Semi-Tensor Product of Matrices , 2007, J. Syst. Sci. Complex..

[90]  Božidar V. Popović,et al.  Mathematical and Computer Modelling , 2011 .

[91]  Kurt Johannes Reinschke,et al.  Multivariable Control a Graph-theoretic Approach , 1988 .

[92]  W. Fulton,et al.  Lie Algebras and Lie Groups , 2004 .

[93]  Mehran Mesbahi,et al.  On strong structural controllability of networked systems: A constrained matching approach , 2013, 2013 American Control Conference.

[94]  Clarence E. Rose,et al.  What is tensor analysis? , 1938, Electrical Engineering.

[95]  Endre Csóka,et al.  Emergence of bimodality in controlling complex networks , 2013, Nature Communications.

[96]  L. Silverman,et al.  Characterization of structural controllability , 1976 .

[97]  David Bawden,et al.  Book Review: Evolution and Structure of the Internet: A Statistical Physics Approach. , 2006 .

[98]  M. Timme,et al.  Revealing networks from dynamics: an introduction , 2014, 1408.2963.

[99]  J. Cirac,et al.  Entanglement percolation in quantum networks , 2006, quant-ph/0612167.

[100]  Guangming Xie,et al.  Controllability and stabilizability of switched linear-systems , 2003, Syst. Control. Lett..

[101]  Wen-Xu Wang,et al.  Exact controllability of complex networks , 2013, Nature Communications.

[102]  D. Signorini,et al.  Neural networks , 1995, The Lancet.

[103]  R. Brockett System Theory on Group Manifolds and Coset Spaces , 1972 .

[104]  K. Lynch Nonholonomic Mechanics and Control , 2004, IEEE Transactions on Automatic Control.

[105]  A. Maritan,et al.  Using the principle of entropy maximization to infer genetic interaction networks from gene expression patterns , 2006, Proceedings of the National Academy of Sciences.

[106]  Eduardo Sontag Controllability is harder to decide than accessibility , 1988 .

[107]  Adilson E Motter,et al.  Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? , 2003, Physical review letters.

[108]  Mauricio Barahona,et al.  Synchronization in small-world systems. , 2002, Physical review letters.

[109]  Jie Ren,et al.  Controlling complex networks: How much energy is needed? , 2012, Physical review letters.

[110]  Wenwu Yu,et al.  On pinning synchronization of complex dynamical networks , 2009, Autom..

[111]  John Lygeros,et al.  Submodularity of energy related controllability metrics , 2014, 53rd IEEE Conference on Decision and Control.

[112]  Noah J. Cowan,et al.  Nodal Dynamics, Not Degree Distributions, Determine the Structural Controllability of Complex Networks , 2011, PloS one.

[113]  D. Luenberger Observing the State of a Linear System , 1964, IEEE Transactions on Military Electronics.

[114]  Jin Wang,et al.  Quantifying the Waddington landscape and biological paths for development and differentiation , 2011, Proceedings of the National Academy of Sciences.

[115]  Eduardo Sontag,et al.  Paradoxical results in perturbation-based signaling network reconstruction. , 2014, Biophysical journal.

[116]  Eduardo D. Sontag,et al.  Mathematical Control Theory: Deterministic Finite Dimensional Systems , 1990 .

[117]  Gauthier,et al.  Stabilizing unstable periodic orbits in fast dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[118]  M. Ng,et al.  Control of Boolean networks: hardness results and algorithms for tree structured networks. , 2007, Journal of theoretical biology.

[119]  Guanrong Chen,et al.  A simple global synchronization criterion for coupled chaotic systems , 2003 .

[120]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[121]  Guanrong Chen,et al.  Synchronization and desynchronization of complex dynamical networks: an engineering viewpoint , 2003 .

[122]  Gábor Stépán,et al.  Balancing with Reflex Delay , 2000 .

[123]  Hai-Jun Zhou,et al.  Statistical Mechanics of the Minimum Dominating Set Problem , 2014, ArXiv.

[124]  J. Collins,et al.  Inferring Genetic Networks and Identifying Compound Mode of Action via Expression Profiling , 2003, Science.

[125]  Maoyin Chen,et al.  Synchronization in time-varying networks: a matrix measure approach. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[126]  Maximino Aldana,et al.  ON THE EMERGENCE OF COLLECTIVE ORDER IN SWARMING SYSTEMS: A RECENT DEBATE , 2009, 0907.3434.

[127]  Tianping Chen,et al.  Pinning Complex Networks by a Single Controller , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.

[128]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[129]  W. M. Bowler,et al.  The Hidden Power of Social Networks , 2004 .

[130]  Physics Letters , 1962, Nature.

[131]  H. Larralde,et al.  Intrinsic and extrinsic noise effects on phase transitions of network models with applications to swarming systems. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.

[132]  Boleslaw K. Szymanski,et al.  Dominating Scale-Free Networks Using Generalized Probabilistic Methods , 2014, Scientific reports.

[133]  S. Perseguers,et al.  Fidelity threshold for long-range entanglement in quantum networks , 2009, 0910.1459.

[134]  Murat Arcak,et al.  Diagonal Stability on Cactus Graphs and Application to Network Stability Analysis , 2011, IEEE Transactions on Automatic Control.

[135]  S. P. Cornelius,et al.  Realistic control of network dynamics , 2013, Nature Communications.

[136]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[137]  Albert-László Barabási,et al.  Target control of complex networks , 2014, Nature Communications.

[138]  L. Chua,et al.  Application of Kronecker products to the analysis of systems with uniform linear coupling , 1995 .

[139]  Edward J. Davison Connectability and structural controllability of composite systems , 1977, Autom..

[140]  F. C. Santos,et al.  Evolutionary games in self-organizing populations , 2008 .

[141]  Luciano da Fontoura Costa,et al.  Journal of Complex Networks , 2013 .

[142]  L. Chua,et al.  Synchronization in an array of linearly coupled dynamical systems , 1995 .

[143]  Randal W. Beard,et al.  Consensus seeking in multiagent systems under dynamically changing interaction topologies , 2005, IEEE Transactions on Automatic Control.

[144]  Jean-Jacques E. Slotine,et al.  On partial contraction analysis for coupled nonlinear oscillators , 2004, Biological Cybernetics.

[145]  Christophe Letellier,et al.  Observability of nonlinear dynamics: normalized results and a time-series approach. , 2008, Chaos.

[146]  E. Hill Journal of Theoretical Biology , 1961, Nature.

[147]  Albert-László Barabási,et al.  Observability of complex systems , 2013, Proceedings of the National Academy of Sciences.

[148]  J. A. Kuznecov Elements of applied bifurcation theory , 1998 .

[149]  Mao-Yin Chen,et al.  Chaos Synchronization in Complex Networks , 2008, IEEE Transactions on Circuits and Systems I: Regular Papers.

[150]  S. Snyder,et al.  Proceedings of the National Academy of Sciences , 1999 .

[151]  Jorge Goncalves,et al.  Control theory and systems biology , 2009 .

[152]  Jürgen Kurths,et al.  Detection of n:m Phase Locking from Noisy Data: Application to Magnetoencephalography , 1998 .

[153]  Mario di Bernardo,et al.  Fully adaptive pinning control of complex networks , 2010, Proceedings of 2010 IEEE International Symposium on Circuits and Systems.

[154]  Lao Songyang,et al.  Controllability and Directionality in Complex Networks , 2012 .

[155]  Takeo Yamada,et al.  A graph-theoretic approach to investigate structural and qualitative properties of systems: A survey , 1990, Networks.

[156]  Guanrong Chen Stability of Nonlinear Systems , 1999 .

[157]  J. Hasty,et al.  Reverse engineering gene networks: Integrating genetic perturbations with dynamical modeling , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[158]  A. Krener,et al.  Nonlinear controllability and observability , 1977 .

[159]  Hendrik B. Geyer,et al.  Journal of Physics A - Mathematical and General, Special Issue. SI Aug 11 2006 ?? Preface , 2006 .

[160]  Rainer Breitling,et al.  What is Systems Biology? , 2010, Front. Physiology.

[161]  A. Barabasi,et al.  Network medicine : a network-based approach to human disease , 2010 .

[162]  Daizhan Cheng,et al.  Controllability and observability of Boolean control networks , 2009, Autom..

[163]  Celso Grebogi,et al.  International Journal of Bifurcation and Chaos: Editorial , 2008 .

[164]  Kazuo Murota,et al.  Matrices and Matroids for Systems Analysis , 2000 .

[165]  Cohen,et al.  Resilience of the internet to random breakdowns , 2000, Physical review letters.

[166]  Edda Klipp,et al.  Systems Biology , 1994 .

[167]  Christina Oettmeier,et al.  Physarum polycephalum percolation as a paradigm for topological phase transitions in transportation networks. , 2012, Physical review letters.

[168]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[169]  David K Campbell,et al.  Editorial: The pre-history of Chaos-An Interdisciplinary Journal of Nonlinear Science. , 2015, Chaos.

[170]  H. Sussmann A general theorem on local controllability , 1987 .

[171]  Mao-Yin Chen,et al.  Some Simple Synchronization Criteria for Complex Dynamical Networks , 2006, IEEE Transactions on Circuits and Systems II: Express Briefs.

[172]  Jari Saramäki,et al.  Small But Slow World: How Network Topology and Burstiness Slow Down Spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[173]  H.G. Tanner,et al.  On the controllability of nearest neighbor interconnections , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[174]  Francesco Sorrentino,et al.  Structural permeability of complex networks to control signals , 2015, Nature Communications.

[175]  Jari Saramäki,et al.  Temporal Networks , 2011, Encyclopedia of Social Network Analysis and Mining.

[176]  Rui J. P. de Figueiredo,et al.  Nonlinear Feedback Control Systems: An Operator Theory Approach , 1993 .

[177]  Luis A. Aguirre,et al.  How the choice of the observable may influence the analysis of nonlinear dynamical systems , 2006 .

[178]  Vicsek,et al.  Novel type of phase transition in a system of self-driven particles. , 1995, Physical review letters.

[179]  E. Kaszkurewicz,et al.  Matrix diagonal stability in systems and computation , 1999 .

[180]  S. Boccaletti,et al.  The control of chaos: theory and applications , 2000 .

[181]  Béla Bollobás,et al.  Random Graphs , 1985 .

[182]  Wen-Xu Wang,et al.  The paradox of controlling complex networks: control inputs versus energy requirement , 2015, ArXiv.

[183]  Christian Commault,et al.  Generic properties and control of linear structured systems: a survey , 2003, Autom..

[184]  Carsten Lund,et al.  On the hardness of approximating minimization problems , 1994, JACM.

[185]  S. Lowen The Biophysical Journal , 1960, Nature.

[186]  Martí Cuquet,et al.  Entanglement percolation in quantum complex networks. , 2009, Physical review letters.

[187]  Ginestra Bianconi,et al.  Network controllability is determined by the density of low in-degree and out-degree nodes. , 2014, Physical review letters.

[188]  H. Mayeda,et al.  Strong Structural Controllability , 1979 .

[189]  Vito Volterra,et al.  Leçons sur la théorie mathématique de la lutte pour la vie , 1931 .

[190]  Special issue on “recent advances in power system control” for international journal of control, automation, and systems , 2004 .

[191]  Bernhard O. Palsson,et al.  BiGG: a Biochemical Genetic and Genomic knowledgebase of large scale metabolic reconstructions , 2010, BMC Bioinformatics.

[192]  Jean-Jacques E. Slotine,et al.  A theoretical study of different leader roles in networks , 2006, IEEE Transactions on Automatic Control.

[193]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[194]  E. Yaz Linear Matrix Inequalities In System And Control Theory , 1998, Proceedings of the IEEE.

[195]  Luis A. Aguirre,et al.  Observability of multivariate differential embeddings , 2005 .

[196]  H. Hermes,et al.  Nonlinear Controllability via Lie Theory , 1970 .

[197]  Jean-Jacques E. Slotine,et al.  On Contraction Analysis for Non-linear Systems , 1998, Autom..

[198]  Derek Ruths,et al.  Control Profiles of Complex Networks , 2014, Science.

[199]  Márton Pósfai,et al.  Structural controllability of temporal networks , 2014 .

[200]  Alexander Olshevsky,et al.  Minimal Controllability Problems , 2013, IEEE Transactions on Control of Network Systems.

[201]  Lihong Huang,et al.  Synchronization analysis of networks with both delayed and non-delayed couplings via adaptive pinning control method ☆ , 2010 .

[202]  Eduardo Sontag,et al.  Untangling the wires: A strategy to trace functional interactions in signaling and gene networks , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[203]  Milena Anguelova,et al.  Nonlinear observability and identifiability: General theory and a case study of a kinetic model for S. Cerevisiae , 2004 .

[204]  Dongchuan Yu,et al.  Estimating the topology of complex dynamical networks by steady state control: Generality and limitation , 2010, Autom..

[205]  Richard M. Karp,et al.  A n^5/2 Algorithm for Maximum Matchings in Bipartite Graphs , 1971, SWAT.

[206]  Lin Wang,et al.  Controllability of networked MIMO systems , 2015, Autom..

[207]  Frank L. Lewis,et al.  Optimal Control , 1986 .

[208]  Frank L. Lewis,et al.  Optimal Control: Lewis/Optimal Control 3e , 2012 .

[209]  K. Goh,et al.  Universal behavior of load distribution in scale-free networks. , 2001, Physical review letters.

[210]  Guanrong Chen,et al.  From Chaos To Order Methodologies, Perspectives and Applications , 1998 .

[211]  Xiao Fan Wang,et al.  Synchronization in Small-World Dynamical Networks , 2002, Int. J. Bifurc. Chaos.

[212]  M. L. Fisher,et al.  An analysis of approximations for maximizing submodular set functions—I , 1978, Math. Program..

[213]  A. Châtelain,et al.  The European Physical Journal D , 1999 .

[214]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[215]  Xiang Li,et al.  Structural Controllability and Controlling Centrality of Temporal Networks , 2014, PloS one.

[216]  Liang Bai,et al.  Edge orientation for optimizing controllability of complex networks. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[217]  Guanrong Chen,et al.  Pinning controllability of asymmetrical weighted scale-free networks , 2008 .

[218]  Jan H. van Schuppen,et al.  Modelling and Control of Cell Reaction Networks , 2001 .

[219]  D Cavalcanti,et al.  Distribution of entanglement in large-scale quantum networks , 2012, Reports on progress in physics. Physical Society.

[220]  Zoltán Toroczkai,et al.  Geometric method for stabilizing unstable periodic orbits , 1994 .

[221]  Ulrich Parlitz,et al.  Inferring local dynamics and connectivity of spatially extended systems with long-range links based on steady-state stabilization. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[222]  Ginestra Bianconi,et al.  Control of Multilayer Networks , 2015, Scientific Reports.

[223]  Daniel J. Gauthier,et al.  Controlling chaos in a fast diode resonator using extended time-delay autosynchronization: Experimental observations and theoretical analysis. , 1997, Chaos.

[224]  J. Hespanha,et al.  Forecasting COVID-19 cases based on a parameter-varying stochastic SIR model , 2019, Annual Reviews in Control.

[225]  D. Luenberger Observers for multivariable systems , 1966 .

[226]  Jie Lin,et al.  Coordination of groups of mobile autonomous agents using nearest neighbor rules , 2003, IEEE Trans. Autom. Control..

[227]  T. Deguchi,et al.  International Journal of Modern Physics B, ❢c World Scientific Publishing Company , 2001 .

[228]  H. Chaté,et al.  Onset of collective and cohesive motion. , 2004, Physical review letters.

[229]  Gianluca Setti,et al.  Design and Analysis of Biomolecular Circuits , 2011 .

[230]  Wen-Xu Wang,et al.  Universal Symmetry in Complex Network Control , 2014, ArXiv.

[231]  Haijun Zhou,et al.  Maximum matching on random graphs , 2003, cond-mat/0309348.

[232]  Tong Zhou,et al.  On the controllability and observability of networked dynamic systems , 2014, Autom..

[233]  H. Sussmann,et al.  Controllability of nonlinear systems , 1972 .

[234]  A. Tero,et al.  Rules for Biologically Inspired Adaptive Network Design , 2010, Science.

[235]  W. Browder,et al.  Annals of Mathematics , 1889 .

[236]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[237]  W. Rugh Nonlinear System Theory: The Volterra / Wiener Approach , 1981 .

[238]  Christophe Letellier,et al.  Interplay between synchronization, observability, and dynamics. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[239]  T. Carroll,et al.  Master Stability Functions for Synchronized Coupled Systems , 1998 .

[240]  Henk Nijmeijer,et al.  Synchronization and Graph Topology , 2005, Int. J. Bifurc. Chaos.

[241]  S. Smale On Gradient Dynamical Systems , 1961 .

[242]  F. Müller,et al.  Few inputs can reprogram biological networks , 2011, Nature.

[243]  S. Shen-Orr,et al.  Network motifs: simple building blocks of complex networks. , 2002, Science.

[244]  Xiang Li,et al.  Pinning a complex dynamical network to its equilibrium , 2004, IEEE Trans. Circuits Syst. I Regul. Pap..

[245]  Y. Lai,et al.  Optimizing controllability of complex networks by minimum structural perturbations. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[246]  R. W. Revans,et al.  Decision and Control , 1968 .

[247]  Fernando Paganini,et al.  IEEE Transactions on Automatic Control , 2006 .

[248]  Gabriel Baglietto,et al.  Computer simulations of the collective displacement of self-propelled agents , 2009, Comput. Phys. Commun..

[249]  J. Rogers Chaos , 1876 .

[250]  F. Garofalo,et al.  Controllability of complex networks via pinning. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[251]  K. Reinschke,et al.  On strong structural controllability of linear systems , 1992, [1992] Proceedings of the 31st IEEE Conference on Decision and Control.

[252]  R. Heinrich,et al.  The Regulation of Cellular Systems , 1996, Springer US.

[253]  M. Peixoto,et al.  Structural stability on two-dimensional manifolds☆ , 1962 .

[254]  H. Mayeda On structural controllability theorem , 1981 .

[255]  Shigeyuki Hosoe,et al.  On the irreducibility condition in the structural controllability theorem , 1979 .

[256]  Wenwu Yu,et al.  Synchronization via Pinning Control on General Complex Networks , 2013, SIAM J. Control. Optim..

[257]  C. Waddington,et al.  The strategy of the genes , 1957 .

[258]  Maurizio Porfiri,et al.  Criteria for global pinning-controllability of complex networks , 2008, Autom..

[259]  Svatopluk Poljak,et al.  On the generic dimension of controllable subspaces , 1990 .

[260]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[261]  Marc Timme,et al.  Inferring network topology from complex dynamics , 2010, 1007.1640.

[262]  Eduardo Sontag,et al.  A passivity-based stability criterion for a class of biochemical reaction networks. , 2008, Mathematical biosciences and engineering : MBE.

[263]  Jürgen Kurths,et al.  Matrix-measure criterion for synchronization in coupled-map networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[264]  J. Maxwell I. On governors , 1868, Proceedings of the Royal Society of London.

[265]  O. Bagasra,et al.  Proceedings of the National Academy of Sciences , 1914, Science.

[266]  Mario di Bernardo,et al.  On QUAD, Lipschitz, and Contracting Vector Fields for Consensus and Synchronization of Networks , 2011, IEEE Transactions on Circuits and Systems I: Regular Papers.

[267]  Albert-László Barabási,et al.  Fundamental limitations of network reconstruction , 2015, ArXiv.

[268]  Derek P. Atherton,et al.  Stability of nonlinear systems , 1981 .

[269]  Z. Duan,et al.  Network synchronizability analysis: a graph-theoretic approach. , 2008, Chaos.

[270]  Kevin E. Bassler,et al.  Network dynamics: Jamming is limited in scale-free systems , 2004, Nature.

[271]  A. G. Butkovskiy,et al.  Optimal control of systems , 1966 .

[272]  J. Cirac,et al.  Entanglement distribution in pure-state quantum networks , 2007, 0708.1025.

[273]  Chaoming Song,et al.  Epigenetic state network approach for describing cell phenotypic transitions , 2014, Interface Focus.

[274]  Wen-Xu Wang,et al.  Intrinsic dynamics induce global symmetry in network controllability , 2015, Scientific Reports.

[275]  Mario di Bernardo,et al.  Contraction Theory and Master Stability Function: Linking Two Approaches to Study Synchronization of Complex Networks , 2009, IEEE Transactions on Circuits and Systems II: Express Briefs.

[276]  A. Czirók,et al.  Collective Motion , 1999, physics/9902023.

[277]  Reza Olfati-Saber,et al.  Flocking for multi-agent dynamic systems: algorithms and theory , 2006, IEEE Transactions on Automatic Control.

[278]  M. Belluscio,et al.  Closed-Loop Control of Epilepsy by Transcranial Electrical Stimulation , 2012, Science.

[279]  G. Vinnicombe,et al.  Fundamental limits on the suppression of molecular fluctuations , 2010, Nature.

[280]  B. Fiedler,et al.  Dynamics and Control at Feedback Vertex Sets. I: Informative and Determining Nodes in Regulatory Networks , 2013, Journal of Dynamics and Differential Equations.

[281]  Jonathan M. W. Slack,et al.  Conrad Hal Waddington: the last Renaissance biologist? , 2002, Nature Reviews Genetics.

[282]  A. Motter,et al.  Synchronization is optimal in nondiagonalizable networks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[283]  義雄 蛯原 The 50th IEEE Conference on Decision and Control and European Control Conferenceに参加して(国際会議の報告) , 2012 .

[284]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.

[285]  J. Coron Control and Nonlinearity , 2007 .

[286]  Mehran Mesbahi,et al.  On state-dependent dynamic graphs and their controllability properties , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[287]  Magnus Egerstedt,et al.  Graph Theoretic Methods in Multiagent Networks , 2010, Princeton Series in Applied Mathematics.

[288]  M. Hasler,et al.  Blinking model and synchronization in small-world networks with a time-varying coupling , 2004 .

[289]  Youxian Sun,et al.  Adaptive synchronization of weighted complex dynamical networks through pinning , 2008 .

[290]  Francis J Doyle,et al.  A model of the cell-autonomous mammalian circadian clock , 2009, Proceedings of the National Academy of Sciences.

[291]  Daqing Li,et al.  From a single network to a network of networks , 2014 .

[292]  Ying-Cheng Lai,et al.  Driving trajectories to a desirable attractor by using small control , 1996 .

[293]  Sergey N. Dorogovtsev,et al.  Critical phenomena in complex networks , 2007, ArXiv.

[294]  D. Elliott A consequence of controllability , 1971 .

[295]  Xiao Fan Wang,et al.  Flocking of Multi-Agents With a Virtual Leader , 2009, IEEE Trans. Autom. Control..

[296]  Wen-Xu Wang,et al.  Energy scaling and reduction in controlling complex networks , 2016, Royal Society Open Science.

[297]  Weiping Li,et al.  Applied Nonlinear Control , 1991 .

[298]  P. Horodecki,et al.  Directed percolation effects emerging from superadditivity of quantum networks , 2012 .

[299]  Francesco Bullo,et al.  Controllability Metrics, Limitations and Algorithms for Complex Networks , 2013, IEEE Transactions on Control of Network Systems.

[300]  S. Liberty,et al.  Linear Systems , 2010, Scientific Parallel Computing.

[301]  Magnus Egerstedt,et al.  Controllability of Multi-Agent Systems from a Graph-Theoretic Perspective , 2009, SIAM J. Control. Optim..

[302]  Christian Commault,et al.  Characterization of generic properties of linear structured systems for efficient computations , 2002, Kybernetika.

[303]  Jean-Jacques E. Slotine,et al.  Stable concurrent synchronization in dynamic system networks , 2005, Neural Networks.

[304]  Physical Review , 1965, Nature.

[305]  R. Gillan New Editor-in-Chief for Journal of Physics A: Mathematical and Theoretical , 2014 .

[306]  Johan Paulsson,et al.  Separating intrinsic from extrinsic fluctuations in dynamic biological systems , 2011, Proceedings of the National Academy of Sciences.

[307]  Peter Hilton,et al.  New Directions in Applied Mathematics , 1982 .

[308]  Nicolas Tabareau,et al.  How Synchronization Protects from Noise , 2007, 0801.0011.

[309]  Ying Cheng Lai,et al.  Controlling complex, non-linear dynamical networks , 2014 .

[310]  Lenka Zdeborová,et al.  The number of matchings in random graphs , 2006, ArXiv.

[311]  Lee Sun-Jin From Chaos to Order , 2011 .

[312]  Ying-Cheng Lai,et al.  Exact controllability of multiplex networks , 2014 .

[313]  Bertram E. Shi,et al.  IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS — I : REGULAR PAPERS , VOL . ? ? , NO . ? ? , ? ? ? ? , 2007 .

[314]  Ali Jadbabaie,et al.  IEEE Transactions on Network Science and Engineering , 2014, IEEE Trans. Netw. Sci. Eng..

[315]  Mason A. Porter,et al.  Multilayer networks , 2013, J. Complex Networks.

[316]  D. Lathrop Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering , 2015 .

[317]  Ulrik Brandes,et al.  What is network science? , 2013, Network Science.

[318]  Adilson E Motter,et al.  Network observability transitions. , 2012, Physical review letters.

[319]  Nahum Shimkin,et al.  Nonlinear Control Systems , 2008 .

[320]  L. Chua,et al.  A UNIFIED FRAMEWORK FOR SYNCHRONIZATION AND CONTROL OF DYNAMICAL SYSTEMS , 1994 .

[321]  István A. Kovács,et al.  Widespread Macromolecular Interaction Perturbations in Human Genetic Disorders , 2015, Cell.

[322]  Christophe Letellier,et al.  Graphical interpretation of observability in terms of feedback circuits. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[323]  Albert-László Barabási,et al.  Control Centrality and Hierarchical Structure in Complex Networks , 2012, PloS one.

[324]  Guangming Xie,et al.  Controllability of a Leader–Follower Dynamic Network With Switching Topology , 2008, IEEE Transactions on Automatic Control.

[325]  R. Kálmán Mathematical description of linear dynamical systems , 1963 .

[326]  E D Sontag,et al.  Some new directions in control theory inspired by systems biology. , 2004, Systems biology.

[327]  T. Tao,et al.  Additive Combinatorics: Graph-theoretic methods , 2006 .

[328]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[329]  Junan Lu,et al.  Pinning adaptive synchronization of a general complex dynamical network , 2008, Autom..

[330]  Béla Bollobás,et al.  Random Graphs: Notation , 2001 .

[331]  S. Sastry Nonlinear Systems: Analysis, Stability, and Control , 1999 .

[332]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[333]  C. Lobry Contr^olabilite des systemes non lineaires , 1970 .

[334]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[335]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[336]  Orest Iftime,et al.  Proceedings of the American control conference (ACC) , 2011, ACC 2011.