A new large-scale learning algorithm for generalized additive models

[1]  T. Tarpey,et al.  A sparse additive model for treatment effect-modifier selection. , 2020, Biostatistics.

[2]  Tong Zhang,et al.  SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator , 2018, NeurIPS.

[3]  Bin Gu,et al.  Asynchronous Doubly Stochastic Sparse Kernel Learning , 2018, AAAI.

[4]  Bin Gu,et al.  Asynchronous Doubly Stochastic Group Regularized Learning , 2018, AISTATS.

[5]  Simon N. Wood,et al.  Generalized Additive Models for Gigadata: Modeling the U.K. Black Smoke Network Daily Data , 2017 .

[6]  Tie-Yan Liu,et al.  Asynchronous Stochastic Proximal Optimization Algorithms with Variance Reduction , 2016, AAAI.

[7]  Yuanzhi Li,et al.  Even Faster SVD Decomposition Yet Without Agonizing Pain , 2016, NIPS.

[8]  Yaoliang Yu,et al.  Additive Approximations in High Dimensional Nonparametric Regression via the SALSA , 2016, ICML.

[9]  Pascal Bianchi,et al.  A Coordinate-Descent Primal-Dual Algorithm with Large Step Size and Possibly Nonseparable Functions , 2015, SIAM J. Optim..

[10]  T. Hastie,et al.  Generalized Additive Model Selection , 2015, 1506.03850.

[11]  Amir Beck,et al.  On the Convergence of Alternating Minimization for Convex Programming with Applications to Iteratively Reweighted Least Squares and Decomposition Schemes , 2015, SIAM J. Optim..

[12]  S. Wood,et al.  Generalized additive models for large data sets , 2015 .

[13]  Yiming Wang,et al.  Accelerated Mini-batch Randomized Block Coordinate Descent Method , 2014, NIPS.

[14]  O. Shamir,et al.  A Stochastic PCA and SVD Algorithm with an Exponential Convergence Rate , 2014, ICML.

[15]  Ding-Xuan Zhou,et al.  Learning rates for the risk of kernel-based quantile regression estimators in additive models , 2014, 1405.3379.

[16]  Stephen J. Wright,et al.  Asynchronous Stochastic Coordinate Descent: Parallelism and Convergence Properties , 2014, SIAM J. Optim..

[17]  Ronny Luss,et al.  Sparse Quantile Huber Regression for Efficient and Robust Estimation , 2014, ArXiv.

[18]  Leon Wenliang Zhong,et al.  Fast Stochastic Alternating Direction Method of Multipliers , 2013, ICML.

[19]  Alexander G. Gray,et al.  Stochastic Alternating Direction Method of Multipliers , 2013, ICML.

[20]  Xi Chen,et al.  Group Sparse Additive Models , 2012, ICML.

[21]  Chia-Hua Ho,et al.  An improved GLMNET for l1-regularized logistic regression , 2011, J. Mach. Learn. Res..

[22]  Larry A. Wasserman,et al.  SpAM: Sparse Additive Models , 2007, NIPS.

[23]  Benjamin Recht,et al.  Random Features for Large-Scale Kernel Machines , 2007, NIPS.

[24]  Hao Helen Zhang,et al.  Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.

[25]  Stephen P. Boyd,et al.  Convex Optimization , 2004, IEEE Transactions on Automatic Control.

[26]  F. Dominici,et al.  On the use of generalized additive models in time-series studies of air pollution and health. , 2002, American journal of epidemiology.

[27]  Stefan Sperlich,et al.  Generalized Additive Models , 2014 .

[28]  Charles R. Johnson,et al.  Matrix analysis , 1985 .

[29]  Hong Chen,et al.  Group Sparse Additive Machine , 2017, NIPS.

[30]  D. Choi A generalization of the Cauchy-Schwarz inequality , 2016 .

[31]  Léon Bottou,et al.  Large-Scale Machine Learning with Stochastic Gradient Descent , 2010, COMPSTAT.

[32]  Les A. Piegl,et al.  B-Spline Basis Functions , 1997 .