Asymptotic properties of the Bernstein density copula estimator for alpha-mixing data

Copulas are extensively used for dependence modeling. In many cases the data does not reveal how the dependence can be modeled using a particular parametric copula. Nonparametric copulas do not share this problem since they are entirely data based. This paper proposes nonparametric estimation of the density copula for @a-mixing data using Bernstein polynomials. We focus only on the dependence structure between stochastic processes, captured by the copula density defined on the unit cube, and not the complete distribution. We study the asymptotic properties of the Bernstein density copula, i.e., we provide the exact asymptotic bias and variance, we establish the uniform strong consistency and the asymptotic normality. An empirical application is considered to illustrate the dependence structure among international stock markets (US and Canada) using the Bernstein density copula estimator.

[1]  E. Rödel,et al.  R–estimation of normed bivariate density functions , 1987 .

[2]  B. M. Brown,et al.  Beta‐Bernstein Smoothing for Regression Curves with Compact Support , 1999 .

[3]  J. Rombouts,et al.  Nonparametric Copula-Based Test for Conditional Independence with Applications to Granger Causality , 2012 .

[4]  Olivier Scaillet,et al.  Testing for Equality between Two Copulas , 2006, J. Multivar. Anal..

[5]  T. Bollerslev,et al.  Generalized autoregressive conditional heteroskedasticity , 1986 .

[6]  Taoufik Bouezmarni,et al.  Semiparametric Multivariate Density Estimation for Positive Data Using Copulas , 2007, Comput. Stat. Data Anal..

[7]  Axel Tenbusch,et al.  Nonparametric curve estimation with bernstein estimates , 1997 .

[8]  S. Satchell,et al.  THE BERNSTEIN COPULA AND ITS APPLICATIONS TO MODELING AND APPROXIMATIONS OF MULTIVARIATE DISTRIBUTIONS , 2004, Econometric Theory.

[9]  Eckhard Liebscher,et al.  Strong convergence of sums of α-mixing random variables with applications to density estimation , 1996 .

[10]  Yoshihide Kakizawa,et al.  Bernstein polynomial probability density estimation , 2004 .

[11]  J. Doob Stochastic processes , 1953 .

[12]  Axel Tenbusch,et al.  Two-dimensional Bernstein polynomial density estimators , 1994 .

[13]  Xiaohong Chen,et al.  Estimation of Copula-Based Semiparametric Time Series Models , 2006 .

[14]  H. Joe Multivariate models and dependence concepts , 1998 .

[15]  Sonia Petrone Random Bernstein Polynomials , 1999 .

[16]  Bernstein polynomial estimation of a spectral density , 2006 .

[17]  L. Wasserman,et al.  Consistency of Bernstein polynomial posteriors , 2002 .

[18]  Xiaohong Chen,et al.  MIXING AND MOMENT PROPERTIES OF VARIOUS GARCH AND STOCHASTIC VOLATILITY MODELS , 2002, Econometric Theory.

[19]  T. Bouezmarni,et al.  Bernstein estimator for unbounded density function , 2007 .

[20]  J. Mielniczuk,et al.  Estimating the density of a copula function , 1990 .

[21]  S. Chen,et al.  Nonparametric estimation of copula functions for dependence modelling , 2007 .

[22]  S. Ghosal Convergence rates for density estimation with Bernstein polynomials , 2001 .

[23]  D. Oakes A Model for Association in Bivariate Survival Data , 1982 .

[24]  Jean-David Fermanian,et al.  Goodness-of-fit tests for copulas , 2005 .

[25]  R. Nelsen An Introduction to Copulas , 1998 .

[26]  R. Nelsen An Introduction to Copulas (Springer Series in Statistics) , 2006 .

[27]  Sonia Petrone Bayesian density estimation using bernstein polynomials , 1999 .

[28]  Ingrid Van Keilegom,et al.  Flexible modeling based on copulas in nonparametric median regression , 2009, J. Multivar. Anal..

[29]  Statistical inference and related topics , 1975 .

[30]  W. Gawronski,et al.  Smoothing histograms by means of lattice-and continuous distributions , 1981 .

[31]  V. Volkonskii,et al.  Some Limit Theorems for Random Functions. II , 1959 .