Novel Classification and Segmentation Techniques with Application to Remotely Sensed Images

The article deals with some new results of investigation, both theoretical and experimental, in the area of image classification and segmentation of remotely sensed images. The article has mainly four parts. Supervised classification is considered in the first part. The remaining three parts address the problem of unsupervised classification (segmentation). The effectiveness of an active support vector classifier that requires reduced number of additional labeled data for improved learning is demonstrated in the first part. Usefulness of various fuzzy thresholding techniques for segmentation of remote sensing images is demonstrated in the second part. A quantitative index of measuring the quality of classification/segmentation in terms of homogeneity of regions is introduced in this regard. Rough entropy (in granular computing framework) of images is defined and used for segmentation in the third part. In the fourth part a homogeneous region in an image is defined as a union of homogeneous line segments for image segmentation. Here Hough transform is used to generate these line segments. Comparative study is also made with related techniques.

[1]  Nikhil R. Pal,et al.  Image thresholding: Some new techniques , 1993, Signal Process..

[2]  Sankar K. Pal,et al.  Self-organization for object extraction using a multilayer neural network and fuzziness measures , 1993, IEEE Trans. Fuzzy Syst..

[3]  Sankar K. Pal,et al.  Object Background Classification Using Hopfield Type Neural Network , 1992, Int. J. Pattern Recognit. Artif. Intell..

[4]  Sankar K. Pal,et al.  Image segmentation using fuzzy correlation , 1992, Inf. Sci..

[5]  James C. Bezdek,et al.  Pattern Recognition with Fuzzy Objective Function Algorithms , 1981, Advanced Applications in Pattern Recognition.

[6]  Andrew K. C. Wong,et al.  A gray-level threshold selection method based on maximum entropy principle , 1989, IEEE Trans. Syst. Man Cybern..

[7]  Bir Bhanu,et al.  Functional template-based SAR image segmentation , 2004, Pattern Recognit..

[8]  A. Gruen,et al.  Semi-Automatic Linear Feature Extraction by Dynamic Programming and LSB-Snakes , 1997 .

[9]  Sankar K. Pal,et al.  Soft Computing for Image Processing , 2000 .

[10]  David A. Landgrebe,et al.  Fast likelihood classification , 1991, IEEE Trans. Geosci. Remote. Sens..

[11]  Robert N. Colwell,et al.  Manual of remote sensing , 1983 .

[12]  Heggere S. Ranganath,et al.  Perfect image segmentation using pulse coupled neural networks , 1999, IEEE Trans. Neural Networks.

[13]  Sankar K. Pal,et al.  Image segmentation using a neural network , 1991, Biological Cybernetics.

[14]  Rui Seara,et al.  Image segmentation by histogram thresholding using fuzzy sets , 2002, IEEE Trans. Image Process..

[15]  Ujjwal Maulik,et al.  Fuzzy partitioning using a real-coded variable-length genetic algorithm for pixel classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[16]  Z. Pawlak Rough Sets: Theoretical Aspects of Reasoning about Data , 1991 .

[17]  D. Angluin Queries and Concept Learning , 1988 .

[18]  Gilles Bertrand,et al.  Quasi-Linear Algorithms for the Topological Watershed , 2005, Journal of Mathematical Imaging and Vision.

[19]  Sankar K. Pal,et al.  On Fuzzy Thresholding of Remotely Sensed Images , 2000 .

[20]  Daphne Koller,et al.  Support Vector Machine Active Learning with Applications to Text Classification , 2000, J. Mach. Learn. Res..

[21]  Thierry Pun,et al.  A new method for grey-level picture thresholding using the entropy of the histogram , 1980 .

[22]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[23]  Michael Egmont-Petersen,et al.  Image processing with neural networks - a review , 2002, Pattern Recognit..

[24]  Zhi-Hua Zhou,et al.  SOM Ensemble-Based Image Segmentation , 2004, Neural Processing Letters.

[25]  A. D. Brink,et al.  Grey-level thresholding of images using a correlation criterion , 1989, Pattern Recognit. Lett..

[26]  Aviad Zlotnick,et al.  Finding Road Seeds in Aerial Images , 1993 .

[27]  Zhang Yanning,et al.  A new method of SAR image segmentation based on neural network , 2003, Proceedings Fifth International Conference on Computational Intelligence and Multimedia Applications. ICCIMA 2003.

[28]  C. A. Murthy,et al.  Analysis of IRS imagery for detecting man-made objects with a multivalued recognition system , 1996, IEEE Trans. Syst. Man Cybern. Part A.

[29]  R. Kettig Computer classification of remotely sensed multispectral image data by extraction and classification of homogeneous objects. , 1975 .

[30]  Jon Atli Benediktsson,et al.  Conjugate-gradient neural networks in classification of multisource and very-high-dimensional remote sensing data , 1993 .

[31]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[32]  T. W. Ridler,et al.  Picture thresholding using an iterative selection method. , 1978 .

[33]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[34]  Sankar K. Pal,et al.  Thresholding for edge detection using human psychovisual phenomena , 1986, Pattern Recognit. Lett..

[35]  Teuvo Kohonen,et al.  Self-Organization and Associative Memory , 1988 .

[36]  Paul M. Mather,et al.  Computer Processing of Remotely-Sensed Images: An Introduction , 1988 .

[37]  Lakhmi C. Jain,et al.  Self-Organizing neural networks: recent advances and applications , 2001 .

[38]  Anil K. Jain,et al.  A Markov random field model for classification of multisource satellite imagery , 1996, IEEE Trans. Geosci. Remote. Sens..

[39]  Bhabatosh Chanda,et al.  On image enhancement and threshold selection using the graylevel co-occurence matrix , 1985, Pattern Recognit. Lett..

[40]  Sankar K. Pal,et al.  Active Support Vector Machines for Pixel Classification in Remote Sensing Images , 2003, IICAI.

[41]  Sankar K. Pal,et al.  Fuzzy Mathematical Approach to Pattern Recognition , 1986 .

[42]  Sankar K. Pal,et al.  Image Model, Poisson Distribution and Object Extraction , 1991, Int. J. Pattern Recognit. Artif. Intell..

[43]  Thomas Risse,et al.  Hough transform for line recognition: Complexity of evidence accumulation and cluster detection , 1989, Comput. Vis. Graph. Image Process..

[44]  Scott E. Decatur,et al.  Application of neural networks to terrain classification , 1989, International 1989 Joint Conference on Neural Networks.

[45]  Andrea Baraldi,et al.  Single linkage region growing algorithms based on the vector degree of match , 1996, IEEE Trans. Geosci. Remote. Sens..

[46]  S. Pal,et al.  Fuzzy geometry in image analysis , 1992 .

[47]  P. Swain,et al.  Neural Network Approaches Versus Statistical Methods In Classification Of Multisource Remote Sensing Data , 1990 .

[48]  Michio Sugeno,et al.  Advances in Soft Computing — AFSS 2002 , 2002, Lecture Notes in Computer Science.

[49]  Andreas Niedermeier,et al.  Detection of coastlines in SAR images using wavelet methods , 2000, IEEE Trans. Geosci. Remote. Sens..

[50]  Sankar K. Pal,et al.  Entropy: a new definition and its applications , 1991, IEEE Trans. Syst. Man Cybern..

[51]  Sankar K. Pal,et al.  A review on image segmentation techniques , 1993, Pattern Recognit..

[52]  Chin-Tu Chen,et al.  Medical image segmentation by a constraint satisfaction neural network , 1990 .

[53]  K. Nikolakopoulos,et al.  The contribution of probability theory in assessing the efficiency of two frequently used vegetation indices , 2004 .

[54]  Guido Gerig,et al.  Level-set evolution with region competition: automatic 3-D segmentation of brain tumors , 2002, Object recognition supported by user interaction for service robots.

[55]  Juan B. Mena,et al.  State of the art on automatic road extraction for GIS update: a novel classification , 2003, Pattern Recognit. Lett..

[56]  Larry S. Davis,et al.  A survey of edge detection techniques , 1975 .

[57]  Paul M. Mather,et al.  Assessment of the effectiveness of support vector machines for hyperspectral data , 2004, Future Gener. Comput. Syst..

[58]  S. K. McFeeters The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features , 1996 .

[59]  Sankar K. Pal,et al.  Theoretical quantification of shape distortion in fuzzy Hough transform , 2005, Fuzzy Sets Syst..

[60]  James M. Keller,et al.  Image segmentation in the presence of uncertainty , 1990, Int. J. Intell. Syst..

[61]  Eric Achten,et al.  Magnetic resonance imaging and spectroscopy in sports medicine , 1991 .

[62]  Andrew K. C. Wong,et al.  A new method for gray-level picture thresholding using the entropy of the histogram , 1985, Comput. Vis. Graph. Image Process..

[63]  T. Kanade,et al.  Genetic Learning For Adaptive Image Segmentation , 1994 .

[64]  Jezching Ton A knowledge-based approach to landsat image interpretation , 1989 .

[65]  Josiane Zerubia,et al.  Texture Analysis through a Markovian Modelling and Fuzzy Classification: Application to Urban Area Extraction from Satellite Images , 2000, International Journal of Computer Vision.

[66]  Azriel Rosenfeld,et al.  Threshold Evaluation Techniques , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[67]  Mohan Trivedi,et al.  Segmentation of a Thematic Mapper Image Using the Fuzzy c-Means Clusterng Algorthm , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[68]  Josiane Zerubia,et al.  A Gibbs Point Process for Road Extraction from Remotely Sensed Images , 2004, International Journal of Computer Vision.

[69]  Philip H. Swain,et al.  Remote Sensing: The Quantitative Approach , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[70]  Jing Li Wang,et al.  Color image segmentation: advances and prospects , 2001, Pattern Recognit..

[71]  Paul M. Mather,et al.  An assessment of the effectiveness of decision tree methods for land cover classification , 2003 .

[72]  Martin Brown,et al.  Linear spectral mixture models and support vector machines for remote sensing , 2000, IEEE Trans. Geosci. Remote. Sens..

[73]  P. K Varshney,et al.  Advanced image processing techniques for remotely sensed hyperspectral data : with 128 figures and 30 tables , 2004 .

[74]  Sankar K. Pal,et al.  Spectral fuzzy sets and soft thresholding , 1992, Inf. Sci..

[75]  Rama Chellappa,et al.  Stochastic and deterministic networks for texture segmentation , 1990, IEEE Trans. Acoust. Speech Signal Process..

[76]  Sanghamitra Bandyopadhyay,et al.  Genetic classifiers for remotely sensed images : comparison with standard methods , 2001 .

[77]  Shmuel Peleg,et al.  A New Probabilistic Relaxation Scheme , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  Mohan M. Trivedi,et al.  Low-Level Segmentation of Aerial Images with Fuzzy Clustering , 1986, IEEE Transactions on Systems, Man, and Cybernetics.

[79]  Mausumi Acharyya,et al.  Segmentation of remotely sensed images using wavelet features and their evaluation in soft computing framework , 2003, IEEE Trans. Geosci. Remote. Sens..

[80]  Ivo Düntsch,et al.  Uncertainty Measures of Rough Set Prediction , 1998, Artif. Intell..

[81]  Xavier Cufí,et al.  Yet Another Survey on Image Segmentation: Region and Boundary Information Integration , 2002, ECCV.

[82]  Sankar K. Pal,et al.  Designing Hopfield Type Networks Using Genetic Algorithms and Its Comparison with Simulated Annealing , 1997, Int. J. Pattern Recognit. Artif. Intell..

[83]  Donald Geman,et al.  An Active Testing Model for Tracking Roads in Satellite Images , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[84]  C. A. Murthy,et al.  Histogram thresholding by minimizing graylevel fuzziness , 1992, Inf. Sci..

[85]  Ashish Ghosh,et al.  A GA-FUZZY Approach to Evolve Hopfield Type Optimum Networks for Object Extraction , 2002, AFSS.

[86]  C. A. Murthy,et al.  Distinct Multicolored Region Descriptors for Object Recognition , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Taejung Kim,et al.  Semi-Automatic Road Extraction Algorithm from IKONOS Images Using Template Matching , 2001 .

[88]  C. A. Murthy,et al.  Bounds for membership functions: A correlation-based approach , 1992, Inf. Sci..

[89]  Teuvo Kohonen,et al.  Self-organization and associative memory: 3rd edition , 1989 .

[90]  Bülent Sankur,et al.  Survey over image thresholding techniques and quantitative performance evaluation , 2004, J. Electronic Imaging.

[91]  Azriel Rosenfeld,et al.  Digital Picture Processing , 1976 .

[92]  Gang Xu,et al.  Information fusion for rural land-use classification with high-resolution satellite imagery , 2003, IEEE Trans. Geosci. Remote. Sens..

[93]  C. A. Murthy,et al.  Correlation between two fuzzy membership functions , 1985 .

[94]  Mads Nielsen,et al.  Computer Vision — ECCV 2002 , 2002, Lecture Notes in Computer Science.

[95]  L. S. Davis,et al.  An assessment of support vector machines for land cover classi(cid:142) cation , 2002 .

[96]  Patrick J. Heagerty,et al.  Proceedings of the Second Seattle Symposium in Biostatistics , 2005 .

[97]  S. Pal,et al.  Segmentation based on measures of contrast, homogeneity, and region size , 1987, IEEE Transactions on Systems, Man, and Cybernetics.

[98]  Gerardo Beni,et al.  A Validity Measure for Fuzzy Clustering , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[99]  Paul Wintz,et al.  Digital image processing (2nd ed.) , 1987 .

[100]  Pan Lin,et al.  Statistical model based on level set method for image segmentation , 2004, The Fourth International Conference onComputer and Information Technology, 2004. CIT '04..

[101]  Philip J. Howarth,et al.  Performance analyses of probabilistic relaxation methods for land-cover classification☆ , 1989 .

[102]  C. A. Murthy,et al.  Utility of multiple choices in detecting ill-defined roadlike structures , 1994 .

[103]  Jianying Hu,et al.  Interactive road finding for aerial images , 1992, [1992] Proceedings IEEE Workshop on Applications of Computer Vision.

[104]  Noboru Babaguchi,et al.  Connectionist model binarization , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[105]  Ashish Ghosh,et al.  Use of fuzziness measures in layered networks for object extraction: a generalization , 1995 .

[106]  N. Pal,et al.  On object background classification , 1992 .

[107]  Ramesh C. Jain,et al.  Segmentation through Variable-Order Surface Fitting , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[108]  Sankar K. Pal,et al.  Pattern Recognition Algorithms for Data Mining: Scalability, Knowledge Discovery, and Soft Granular Computing , 2004 .

[109]  Thomas Villmann,et al.  Neural maps in remote sensing image analysis , 2003, Neural Networks.

[110]  Sankar K. Pal,et al.  A Note on the Quantitative Measure of Image Enhancement Through Fuzziness , 1982, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[111]  Dana H. Ballard,et al.  Generalizing the Hough transform to detect arbitrary shapes , 1981, Pattern Recognit..

[112]  King-Sun Fu,et al.  A survey on image segmentation , 1981, Pattern Recognit..

[113]  Kanti V. Mardia,et al.  A Spatial Thresholding Method for Image Segmentation , 1988, IEEE Trans. Pattern Anal. Mach. Intell..

[114]  Sang Uk Lee,et al.  On the color image segmentation algorithm based on the thresholding and the fuzzy c-means techniques , 1990, Pattern Recognit..

[115]  C. Özkan,et al.  Comparison of maximum likelihood classification method with supervised artificial neural network algorithms for land use activities , 2004 .

[116]  Sankar K. Pal,et al.  Segmentation of multispectral remote sensing images using active support vector machines , 2004, Pattern Recognit. Lett..

[117]  Donald B. Percival,et al.  The discrete wavelet transform and the scale analysis of the surface properties of sea ice , 1996, IEEE Trans. Geosci. Remote. Sens..

[118]  A. G. Wacker,et al.  Minimum Distance Classification in Remote Sensing , 1972 .

[119]  Wen-Hsiang Tsai,et al.  Gray-scale hough transform for thick line detection in gray-scale images , 1995, Pattern Recognit..

[120]  Sankar K. Pal,et al.  Grey level thresholding using second-order statistics , 1983, Pattern Recognit. Lett..

[121]  Fernand Meyer,et al.  Topographic distance and watershed lines , 1994, Signal Process..

[122]  Shinn-Ying Ho,et al.  Design and Analysis of an Efficient Evolutionary Image Segmentation Algorithm , 2003, J. VLSI Signal Process..

[123]  J. A. Richards,et al.  Pixel Labeling by Supervised Probabilistic Relaxation , 1981, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[124]  David B. Cooper,et al.  Automatic finding of main roads in aerial images by using geometric-stochastic models and estimation , 1993, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[125]  Robert H. Laprade Split-and-merge segmentation of aerial photographs , 1988, Comput. Vis. Graph. Image Process..

[126]  Andrzej Skowron,et al.  The Discernibility Matrices and Functions in Information Systems , 1992, Intelligent Decision Support.

[127]  Ronald Bert Ohlander,et al.  Analysis of natural scenes. , 1975 .

[128]  Christoph Schnörr,et al.  Natural Image Statistics for Natural Image Segmentation , 2005, International Journal of Computer Vision.

[129]  Rafael C. González,et al.  An Iterative Thresholding Algorithm for Image Segmentation , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[130]  Fangju Wang,et al.  Fuzzy supervised classification of remote sensing images , 1990 .

[131]  Martin D. Levine,et al.  Dynamic Measurement of Computer Generated Image Segmentations , 1985, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[132]  Azriel Rosenfeld,et al.  Some experiments on variable thresholding , 1979, Pattern Recognit..

[133]  Lotfi A. Zadeh,et al.  Toward a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic , 1997, Fuzzy Sets Syst..

[134]  Laurence S. Dooley,et al.  Review of fuzzy image segmentation techniques , 2001 .

[135]  Charles Kervrann,et al.  Optimal Level Curves and Global Minimizers of Cost Functionals in Image Segmentation , 2002, Journal of Mathematical Imaging and Vision.

[136]  Horst Bischof,et al.  Multispectral classification of Landsat-images using neural networks , 1992, IEEE Trans. Geosci. Remote. Sens..

[137]  N. Khazenie,et al.  Spatial-temporal Autocorrelated Model For Contextual Classification , 1990 .

[138]  Donald Geman,et al.  Bayes Smoothing Algorithms for Segmentation of Binary Images Modeled by Markov Random Fields , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[139]  Y. J. Zhang,et al.  A survey on evaluation methods for image segmentation , 1996, Pattern Recognit..

[140]  Andrzej Skowron,et al.  Rough-Fuzzy Hybridization: A New Trend in Decision Making , 1999 .

[141]  Sankar K. Pal,et al.  Granular computing, rough entropy and object extraction , 2005, Pattern Recognit. Lett..

[142]  Robert L. Cannon,et al.  Iterative fuzzy image segmentation , 1985, Pattern Recognit..

[143]  W. E. Blanz,et al.  A connectionist classifier architecture applied to image segmentation , 1990, [1990] Proceedings. 10th International Conference on Pattern Recognition.

[144]  Alfred M. Bruckstein,et al.  A new method for image segmentation , 1988, [1988 Proceedings] 9th International Conference on Pattern Recognition.

[145]  Ujjwal Maulik,et al.  Genetic clustering for automatic evolution of clusters and application to image classification , 2002, Pattern Recognit..

[146]  Gautam Das,et al.  Intelligent Information Technology, 7th International Conference on Information Technology, CIT 2004, Hyderabad, India, December 20-23, 2004, Proceedings , 2004, CIT.

[147]  Paolo Gamba,et al.  Texture segmentation in remote sensing images by means of packet wavelets and fuzzy clustering , 1995, Remote Sensing.

[148]  Ronald M. Welch,et al.  A neural network approach to cloud classification , 1990 .

[149]  Andrea Baraldi,et al.  A neural network for unsupervised categorization of multivalued input patterns: an application to satellite imaee clustering , 1995 .

[150]  R. Słowiński Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory , 1992 .

[151]  Sankar K. Pal,et al.  Fuzzy models for pattern recognition : methods that search for structures in data , 1992 .

[152]  David A. Cohn,et al.  Improving generalization with active learning , 1994, Machine Learning.

[153]  H. Derin,et al.  A recursive algorithm for the Bayes solution of the smoothing problem , 1981 .

[154]  C. A. Murthy,et al.  Data condensation in large databases by incremental learning with support vector machines , 2000, Proceedings 15th International Conference on Pattern Recognition. ICPR-2000.

[155]  S. Pal,et al.  Segmentation of remotely sensed images with fuzzy thresholding, and quantitative evaluation , 2000 .

[156]  Philip H. Swain,et al.  Purdue e-Pubs , 2022 .

[157]  Pat Langley,et al.  Editorial: On Machine Learning , 1986, Machine Learning.

[158]  S. Pal,et al.  Image enhancement using fuzzy set , 1980 .

[159]  Sanghamitra Bandyopadhyay,et al.  Pixel classification using variable string genetic algorithms with chromosome differentiation , 2001, IEEE Trans. Geosci. Remote. Sens..

[160]  C. A. Murthy,et al.  A new gray level based Hough transform for region extraction: An application to IRS images , 1998, Pattern Recognit. Lett..

[161]  Zbigniew M. Wojcik,et al.  Rough approximation of shapes in pattern recognition , 1987, Comput. Vis. Graph. Image Process..

[162]  Sankar K. Pal,et al.  Multispectral image segmentation using the rough-set-initialized EM algorithm , 2002, IEEE Trans. Geosci. Remote. Sens..

[163]  Azriel Rosenfeld,et al.  Image enhancement and thresholding by optimization of fuzzy compactness , 1988, Pattern Recognit. Lett..

[164]  Anil K. Jain,et al.  Segmentation of Document Images , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[165]  James C. Bezdek,et al.  A comparison of neural network and fuzzy clustering techniques in segmenting magnetic resonance images of the brain , 1992, IEEE Trans. Neural Networks.

[166]  Zheng Niu,et al.  Evolving neural network using real coded genetic algorithm (GA) for multispectral image classification , 2004, Future Gener. Comput. Syst..

[167]  Swapan K. Parui,et al.  A parallel algorithm for detection of linear structures in satellite images , 1991, Pattern Recognit. Lett..

[168]  Michael R. Anderberg,et al.  Cluster Analysis for Applications , 1973 .

[169]  Christopher J. C. Burges,et al.  A Tutorial on Support Vector Machines for Pattern Recognition , 1998, Data Mining and Knowledge Discovery.

[170]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[171]  Richard O. Duda,et al.  Use of the Hough transformation to detect lines and curves in pictures , 1972, CACM.

[172]  Robert A. Schowengerdt,et al.  Remote sensing, models, and methods for image processing , 1997 .

[173]  John F. Haddon,et al.  Generalised threshold selection for edge detection , 1988, Pattern Recognit..

[174]  James C. Bezdek,et al.  Efficient Implementation of the Fuzzy c-Means Clustering Algorithms , 1986, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[175]  C. Chow,et al.  Automatic boundary detection of the left ventricle from cineangiograms. , 1972, Computers and biomedical research, an international journal.

[176]  Jon Sticklen,et al.  Knowledge-based segmentation of Landsat images , 1991, IEEE Trans. Geosci. Remote. Sens..

[177]  Jiaxiong Peng,et al.  Double random field models for remote sensing image segmentation , 2004, Pattern Recognit. Lett..

[178]  Pramod K. Varshney,et al.  ICA mixture model based unsupervised classification of hyperspectral imagery , 2002, Applied Imagery Pattern Recognition Workshop, 2002. Proceedings..

[179]  Ahmed S. Abutableb Automatic thresholding of gray-level pictures using two-dimensional entropy , 1989 .

[180]  C. A. Murthy,et al.  Fuzzy thresholding: mathematical framework, bound functions and weighted moving average technique , 1990, Pattern Recognit. Lett..

[181]  Yoh-Han Pao,et al.  Adaptive pattern recognition and neural networks , 1989 .

[182]  C. A. Murthy,et al.  IRS image segmentation: minimum distance classifier approach , 1992, [1992] Proceedings. 11th IAPR International Conference on Pattern Recognition.

[183]  C. A. Murthy,et al.  IEEE TRANSACTIONS ON IMAGE PROCESSING 1 Standardization of Edge Magnitude in Color Images , 2022 .

[184]  R. D. Overheim,et al.  Light and Color , 1982 .

[185]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[186]  Ioannis Patras,et al.  Video Segmentation by MAP Labeling of Watershed Segments , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[187]  Greg Schohn,et al.  Less is More: Active Learning with Support Vector Machines , 2000, ICML.

[188]  S. D. Bedrosian,et al.  Experimentally derived fuzzy membership function for gray level images , 1988 .

[189]  John A. Richards,et al.  Remote Sensing Digital Image Analysis: An Introduction , 1999 .

[190]  T. Villmann,et al.  Extensions and modifications of the Kohenen-SOM and applications in remote sensing image analysis , 2001 .

[191]  Philip H. Swain,et al.  Bayesian contextual classification based on modified M-estimates and Markov random fields , 1996, IEEE Trans. Geosci. Remote. Sens..

[192]  Marvin E. Bauer,et al.  Identification of agricultural crops by computer processing of ERTS-MSS data , 1973 .

[193]  Josef Kittler,et al.  Minimum error thresholding , 1986, Pattern Recognit..

[194]  Lotfi A. Zadeh,et al.  Fuzzy Sets , 1996, Inf. Control..

[195]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[196]  Mausumi Acharyya,et al.  M-Band Wavelets: Application to Texture Segmentation for Real Life Image Analysis , 2003, Int. J. Wavelets Multiresolution Inf. Process..

[197]  Reinhard Eckhorn,et al.  Feature Linking via Synchronization among Distributed Assemblies: Simulations of Results from Cat Visual Cortex , 1990, Neural Computation.

[198]  Ernest L. Hall,et al.  Computer Image Processing and Recognition , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[199]  Farid Melgani,et al.  An explicit fuzzy supervised classification method for multispectral remote sensing images , 2000, IEEE Trans. Geosci. Remote. Sens..

[200]  Nello Cristianini,et al.  Query Learning with Large Margin Classi ersColin , 2000 .

[201]  P.K Sahoo,et al.  A survey of thresholding techniques , 1988, Comput. Vis. Graph. Image Process..

[202]  R. Kettig,et al.  Classification of Multispectral Image Data by Extraction and Classification of Homogeneous Objects , 1976, IEEE Transactions on Geoscience Electronics.