Set-Valued Means of Random Particles
暂无分享,去创建一个
[1] Geometrical Means, Medians and Variances for Samples of Particles , 1997 .
[2] J. Gower. Generalized procrustes analysis , 1975 .
[3] Behzad Razavi. Testing and Characterization , 1995 .
[4] K. Mardia,et al. Theoretical and Distributional Aspects of Shape Analysis , 1991 .
[5] Arthur E. Hawkins,et al. The shape of powder-particle outlines , 1994 .
[6] R. Aumann. INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .
[7] T. P. Meloy,et al. Testing and characterization of powders and fine particles , 1980 .
[8] B. Hambly. Fractals, random shapes, and point fields , 1994 .
[9] H. Karcher. Riemannian center of mass and mollifier smoothing , 1977 .
[10] C. Goodall. Procrustes methods in the statistical analysis of shape , 1991 .
[11] M. Fréchet. Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .
[12] D. Kendall,et al. The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics , 1993 .
[13] G. Matheron. Random Sets and Integral Geometry , 1976 .
[14] T. Gasser,et al. Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .
[15] H. Ziezold,et al. Mean Figures and Mean Shapes Applied to Biological Figure and Shape Distributions in the Plane , 1994 .
[16] Paul J. Besl,et al. A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..
[17] T. K. Carne. The Geometry of Shape Spaces , 1990 .
[18] H. Ziezold. On Expected Figures and a Strong Law of Large Numbers for Random Elements in Quasi-Metric Spaces , 1977 .
[19] B. Silverman,et al. Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .
[20] D. Kendall. MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .
[21] R. A. Vitale. An alternate formulation of mean value for random geometric figures * , 1988 .