Set-Valued Means of Random Particles

Planar images of powder particles or sand grains can be interpreted as “figures”, i.e., equivalence classes of directlycongruent compact sets. The paper introduces a concept of set-valuedmeans and real-valued variances for samples of such figures. Inobtaining these results, the images are registered to have similarlocations and orientations. The method is applied to find a mean figure of a sample of polygonal particles.

[1]  Geometrical Means, Medians and Variances for Samples of Particles , 1997 .

[2]  J. Gower Generalized procrustes analysis , 1975 .

[3]  Behzad Razavi Testing and Characterization , 1995 .

[4]  K. Mardia,et al.  Theoretical and Distributional Aspects of Shape Analysis , 1991 .

[5]  Arthur E. Hawkins,et al.  The shape of powder-particle outlines , 1994 .

[6]  R. Aumann INTEGRALS OF SET-VALUED FUNCTIONS , 1965 .

[7]  T. P. Meloy,et al.  Testing and characterization of powders and fine particles , 1980 .

[8]  B. Hambly Fractals, random shapes, and point fields , 1994 .

[9]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[10]  C. Goodall Procrustes methods in the statistical analysis of shape , 1991 .

[11]  M. Fréchet Les éléments aléatoires de nature quelconque dans un espace distancié , 1948 .

[12]  D. Kendall,et al.  The Riemannian Structure of Euclidean Shape Spaces: A Novel Environment for Statistics , 1993 .

[13]  G. Matheron Random Sets and Integral Geometry , 1976 .

[14]  T. Gasser,et al.  Statistical Tools to Analyze Data Representing a Sample of Curves , 1992 .

[15]  H. Ziezold,et al.  Mean Figures and Mean Shapes Applied to Biological Figure and Shape Distributions in the Plane , 1994 .

[16]  Paul J. Besl,et al.  A Method for Registration of 3-D Shapes , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  T. K. Carne The Geometry of Shape Spaces , 1990 .

[18]  H. Ziezold On Expected Figures and a Strong Law of Large Numbers for Random Elements in Quasi-Metric Spaces , 1977 .

[19]  B. Silverman,et al.  Estimating the mean and covariance structure nonparametrically when the data are curves , 1991 .

[20]  D. Kendall MORPHOMETRIC TOOLS FOR LANDMARK DATA: GEOMETRY AND BIOLOGY , 1994 .

[21]  R. A. Vitale An alternate formulation of mean value for random geometric figures * , 1988 .