The Floodlight Problem

Given three angles summing to 2π, given n points in the plane and a tripartition k1 + k2 + k3 = n, we can tripartition the plane into three wedges of the given angles so that the i-th wedge contains ki of the points. This new result on dissecting point sets is used to prove that lights of specified angles not exceeding π can be placed at n fixed points in the plane to illuminate the entire plane if and only if the angles sum to at least 2π. We give O(nlog n) algorithms for both these problems.