Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics

Low-dimensional piezoelectric semiconductor nanomaterials, such as ZnO and GaN, have superior mechanical properties and can be integrated into flexible devices that can be subjected to large strain. More importantly, the coupling between piezoelectric polarization and semiconductor properties (for example, electronic transport and photoexcitation) in these materials gives rise to unprecedented device characteristics. This has increased research interest in the emerging fields of piezotronics and piezo-phototronics, which offer new means of manipulating charge-carrier transport, generation, recombination or separation in the controlled operation of flexible devices through the application of external mechanical stimuli. We review the recent progress in advancing our fundamental understanding and in realizing practical applications of piezotronics and piezo-phototronics, and provide an in-depth discussion of future research directions. Piezotronics and piezo-phototronics offer new means of implementing adaptive electronics and optoelectronics, taking advantage of the coupling between piezoelectric polarization and semiconductor properties in piezoelectric semiconductor nanomaterials. This Review discusses the recent progress in piezotronics and piezo-phototronics, as well as future research directions.

[1]  Theodore I. Kamins,et al.  Device Electronics for Integrated Circuits , 1977 .

[2]  E. H. Rhoderick,et al.  Metal–Semiconductor Contacts , 1979 .

[3]  R. A. Ferren Advances in polymeric piezoelectric transducers , 1991 .

[4]  P. Bhattacharya,et al.  Semiconductor Optoelectronic Devices , 1993 .

[5]  Pallab Bhattacharya,et al.  Semiconductor optoelectronic devices (2nd ed.) , 1997 .

[6]  J. Chelikowsky,et al.  First-principles simulations of liquid ZnTe , 2001 .

[7]  H. Kroemer Nobel Lecture: Quasielectric fields and band offsets: teaching electrons new tricks , 2001 .

[8]  J. Pendry,et al.  Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks , 2001 .

[9]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[10]  Andre K. Geim,et al.  Electric Field Effect in Atomically Thin Carbon Films , 2004, Science.

[11]  H. Morkoç,et al.  A COMPREHENSIVE REVIEW OF ZNO MATERIALS AND DEVICES , 2005 .

[12]  Germany,et al.  Theoretical current-voltage characteristics of ferroelectric tunnel junctions , 2005, cond-mat/0503546.

[13]  Angus I. Kingon,et al.  Lead zirconate titanate thin films directly on copper electrodes for ferroelectric, dielectric and piezoelectric applications , 2005 .

[14]  Zhong Lin Wang,et al.  Piezoelectric field effect transistor and nanoforce sensor based on a single ZnO nanowire. , 2006, Nano letters.

[15]  C. Chen,et al.  Bending strength and flexibility of ZnO nanowires , 2007 .

[16]  Zhong Lin Wang,et al.  Flexible piezotronic strain sensor. , 2008, Nano letters.

[17]  Zhong Lin Wang,et al.  Piezoelectric-potential-controlled polarity-reversible Schottky diodes and switches of ZnO wires. , 2008, Nano letters.

[18]  Yen‐Fu Lin,et al.  The impact of nanocontact on nanowire based nanoelectronics. , 2008, Nano letters.

[19]  T. Someya,et al.  A Rubberlike Stretchable Active Matrix Using Elastic Conductors , 2008, Science.

[20]  Yong Ding,et al.  Multi-quantum-well nanowire heterostructures for wavelength-controlled lasers. , 2008, Nature materials.

[21]  Wanlin Guo,et al.  Electronic and Mechanical Coupling in Bent ZnO Nanowires , 2009, Advanced materials.

[22]  Zhiyuan Gao,et al.  Dynamic fatigue studies of ZnO nanowires by in‐situ transmission electron microscopy , 2009 .

[23]  Yifan Gao,et al.  Piezoelectric potential gated field-effect transistor based on a free-standing ZnO wire. , 2009, Nano letters.

[24]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[25]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[26]  M. Notomi,et al.  Sub-femtojoule all-optical switching using a photonic-crystal nanocavity , 2010 .

[27]  Yan Zhang,et al.  Optimizing the power output of a ZnO photocell by piezopotential. , 2010, ACS nano.

[28]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[29]  Niels Søndergaard,et al.  Photovoltaics with piezoelectric core-shell nanowires. , 2010, Nano letters.

[30]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[31]  Minbaek Lee,et al.  Piezopotential gated nanowire--nanotube hybrid field-effect transistor. , 2010, Nano letters.

[32]  Youfan Hu,et al.  Designing the electric transport characteristics of ZnO micro/nanowire devices by coupling piezoelectric and photoexcitation effects. , 2010, ACS nano.

[33]  Zhong Lin Wang Piezopotential gated nanowire devices: Piezotronics and piezo-phototronics , 2010 .

[34]  Wenzhuo Wu,et al.  Wafer-scale high-throughput ordered growth of vertically aligned ZnO nanowire arrays. , 2010, Nano letters.

[35]  Paolo Bonato,et al.  Wearable Sensors and Systems , 2010, IEEE Engineering in Medicine and Biology Magazine.

[36]  Zhong Lin Wang,et al.  Enhancing sensitivity of a single ZnO micro-/nanowire photodetector by piezo-phototronic effect. , 2010, ACS nano.

[37]  P. Bonato From Enabling Technology to Clinical Applications , 2010 .

[38]  Zhong‐Lin Wang,et al.  Strain‐Gated Piezotronic Logic Nanodevices , 2010, Advanced materials.

[39]  Zhimin Shi,et al.  Fundamentals and Applications of Slow Light , 2010 .

[40]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[41]  L. Pintilie,et al.  Ferroelectric Schottky diode behavior from a SrRuO3-Pb(Zr0.2Ti0.8)O3-Ta structure , 2010 .

[42]  Zhong Lin Wang,et al.  Enhancing light emission of ZnO microwire-based diodes by piezo-phototronic effect. , 2011, Nano letters.

[43]  E. Boyden,et al.  Face-selective electrostatic control of hydrothermal zinc oxide nanowire synthesis. , 2011, Nature materials.

[44]  F. Boxberg,et al.  Photovoltaics with piezoelectric core‐shell nanowires , 2011 .

[45]  Wenzhuo Wu,et al.  Piezotronic nanowire-based resistive switches as programmable electromechanical memories. , 2011, Nano letters.

[46]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[47]  Zhong‐Lin Wang,et al.  Fundamental Theory of Piezotronics , 2011, Advanced materials.

[48]  Strain distribution in bent ZnO microwires , 2011 .

[49]  Raeed H. Chowdhury,et al.  Epidermal Electronics , 2011, Science.

[50]  Yong Ding,et al.  Piezotronic effect on the output voltage of P3HT/ZnO micro/nanowire heterojunction solar cells. , 2011, Nano letters.

[51]  Andras Kis,et al.  Stretching and breaking of ultrathin MoS2. , 2011, ACS nano.

[52]  Zhenqiang Ma,et al.  Interface engineering by piezoelectric potential in ZnO-based photoelectrochemical anode. , 2011, Nano letters.

[53]  Yan Zhang,et al.  Theory of Piezo‐Phototronics for Light‐Emitting Diodes , 2012, Advanced materials.

[54]  Zhenan Bao,et al.  Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes , 2012 .

[55]  H. Chan,et al.  Piezo‐Phototronic Effect‐Induced Dual‐Mode Light and Ultrasound Emissions from ZnS:Mn/PMN–PT Thin‐Film Structures , 2012, Advanced materials.

[56]  D. Bayerl,et al.  Three‐Dimensional Kelvin Probe Microscopy for Characterizing In‐Plane Piezoelectric Potential of Laterally Deflected ZnO Micro‐/Nanowires , 2012 .

[57]  Q. Fu,et al.  Strain induced exciton fine-structure splitting and shift in bent ZnO microwires , 2012, Scientific Reports.

[58]  Jian Shi,et al.  Band Structure Engineering at Heterojunction Interfaces via the Piezotronic Effect , 2012, Advanced materials.

[59]  Jun-Han Huang,et al.  Crystal face-dependent nanopiezotronics of an obliquely aligned InN nanorod array. , 2012, Nano letters.

[60]  Zhong Lin Wang,et al.  Vertically aligned CdSe nanowire arrays for energy harvesting and piezotronic devices. , 2012, ACS nano.

[61]  Caofeng Pan,et al.  Piezotronic Effect on the Transport Properties of GaN Nanobelts for Active Flexible Electronics , 2012, Advanced materials.

[62]  Yong Ding,et al.  Piezo-phototronic effect enhanced visible and ultraviolet photodetection using a ZnO-CdS core-shell micro/nanowire. , 2012, ACS nano.

[63]  Yuefei Zhang,et al.  Size-dependent bandgap modulation of ZnO nanowires by tensile strain. , 2012, Nano letters.

[64]  Caofeng Pan,et al.  Piezo‐Phototronic Effect of CdSe Nanowires , 2012, Advanced materials.

[65]  Yong Ding,et al.  Piezo-phototronic effect on electroluminescence properties of p-type GaN thin films. , 2012, Nano letters.

[66]  Andres Castellanos-Gomez,et al.  Elastic Properties of Freely Suspended MoS2 Nanosheets , 2012, Advanced materials.

[67]  Wang Yao,et al.  Coupled spin and valley physics in monolayers of MoS2 and other group-VI dichalcogenides. , 2011, Physical review letters.

[68]  X. Bai,et al.  The Piezotronic Effect of Zinc Oxide Nanowires Studied by In Situ TEM , 2012, Advanced materials.

[69]  Biao Wang,et al.  Giant piezoelectric resistance effect of nanoscale zinc oxide tunnel junctions: first principles simulations. , 2012, Physical chemistry chemical physics : PCCP.

[70]  Zhong Lin Wang Piezotronics and piezo-phototronics , 2012, 70th Device Research Conference.

[71]  Zhong‐Lin Wang,et al.  Progress in Piezotronics and Piezo‐Phototronics , 2012, Advanced materials.

[72]  Ying Liu,et al.  Nanowire Piezo‐phototronic Photodetector: Theory and Experimental Design , 2012, Advanced materials.

[73]  Zhong Lin Wang,et al.  Enhanced Cu₂S/CdS coaxial nanowire solar cells by piezo-phototronic effect. , 2012, Nano letters.

[74]  D. Chi,et al.  Fabricating high-quality GaN-based nanobelts by strain-controlled cracking of thin solid films for application in piezotronics , 2012 .

[75]  Evan J. Reed,et al.  Intrinsic Piezoelectricity in Two-Dimensional Materials , 2012 .

[76]  Long Lin,et al.  Replacing a Battery by a Nanogenerator with 20 V Output , 2012, Advanced materials.

[77]  Long Lin,et al.  Strain-gated piezotronic transistors based on vertical zinc oxide nanowires. , 2012, ACS nano.

[78]  Jian Shi,et al.  Piezopotential-driven redox reactions at the surface of piezoelectric materials. , 2012, Angewandte Chemie.

[79]  Ning Wang,et al.  Piezotronic effects on the optical properties of ZnO nanowires. , 2012, Nano letters.

[80]  Yan Zhang,et al.  Ultrahigh sensitive piezotronic strain sensors based on a ZnSnO3 nanowire/microwire. , 2012, ACS nano.

[81]  Yan Zhang,et al.  Piezo-phototronics effect on nano/microwire solar cells , 2012 .

[82]  Vladimir Mitin,et al.  Introduction to Nanoelectronics: Science, Nanotechnology, Engineering, and Applications , 2012 .

[83]  Zhong Lin Wang,et al.  Temperature dependence of the piezotronic effect in ZnO nanowires. , 2013, Nano letters.

[84]  Yue Zhang,et al.  Enhancing sensitivity of force sensor based on a ZnO tetrapod by piezo-phototronic effect , 2013 .

[85]  Kenneth L. Shepard,et al.  Graphene Field-Effect Transistors Based on Boron–Nitride Dielectrics , 2013, Proceedings of the IEEE.

[86]  Timothy C. Berkelbach,et al.  Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. , 2013, Nature Materials.

[87]  Markus Mohr,et al.  Carbon fiber-ZnO nanowire hybrid structures for flexible and adaptable strain sensors. , 2013, Nanoscale.

[88]  Yan Zhang,et al.  Theoretical study of piezotronic heterojunction , 2013 .

[89]  Pei Lin,et al.  Self-powered UV photosensor based on PEDOT:PSS/ZnO micro/nanowire with strain-modulated photoresponse. , 2013, ACS applied materials & interfaces.

[90]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics – From single nanodevices to array of devices and then to integrated functional system , 2013 .

[91]  Zhong Lin Wang,et al.  Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect. , 2013, Nano letters.

[92]  Zhong Lin Wang,et al.  High performance of ZnO nanowire protein sensors enhanced by the piezotronic effect , 2013 .

[93]  Zhong Lin Wang,et al.  Piezotronic effect on the sensitivity and signal level of Schottky contacted proactive micro/nanowire nanosensors. , 2013, ACS nano.

[94]  Fang Zhang,et al.  Enhanced Performance of Flexible ZnO Nanowire Based Room‐Temperature Oxygen Sensors by Piezotronic Effect , 2013, Advanced materials.

[95]  Zhong Lin Wang,et al.  Effective piezo-phototronic enhancement of solar cell performance by tuning material properties , 2013 .

[96]  Andras Kis,et al.  Ultrasensitive photodetectors based on monolayer MoS2. , 2013, Nature nanotechnology.

[97]  Yan Zhang,et al.  A self-powered piezotronic strain sensor based on single ZnSnO3 microbelts , 2013 .

[98]  Xudong Wang Piezotronics: A new field of strain-engineered functional semiconductor devices , 2013 .

[99]  Xudong Wang,et al.  Mapping of strain-piezopotential relationship along bent zinc oxide microwires , 2013 .

[100]  Z. Liao,et al.  Size-dependent correlations between strain and phonon frequency in individual ZnO nanowires. , 2013, ACS nano.

[101]  Stephanie J. Benight,et al.  Stretchable and self-healing polymers and devices for electronic skin , 2013 .

[102]  Caofeng Pan,et al.  Enhanced Performance of a ZnO Nanowire‐Based Self‐Powered Glucose Sensor by Piezotronic Effect , 2013 .

[103]  Yong Ding,et al.  Piezotronic effect in solution-grown p-type ZnO nanowires and films. , 2013, Nano letters.

[104]  Lukas Schmidt-Mende,et al.  Photocatalytic Reduction of CO2 on TiO2 and Other Semiconductors , 2013 .

[105]  Zhong Lin Wang,et al.  Taxel-Addressable Matrix of Vertical-Nanowire Piezotronic Transistors for Active and Adaptive Tactile Imaging , 2013, Science.

[106]  Christian Falconi,et al.  Lateral bending of tapered piezo-semiconductive nanostructures for ultra-sensitive mechanical force to voltage conversion , 2013, Nanotechnology.

[107]  Yue Zheng,et al.  Dissimilar-electrodes-induced asymmetric characteristic and diode effect of current transport in zinc oxide tunnel junctions , 2013 .

[108]  Yong Ding,et al.  Piezotronic Effect in Flexible Thin‐film Based Devices , 2013, Advanced materials.

[109]  Zhong Lin Wang,et al.  High-resolution electroluminescent imaging of pressure distribution using a piezoelectric nanowire LED array , 2013, Nature Photonics.

[110]  Jed I. Ziegler,et al.  Bandgap engineering of strained monolayer and bilayer MoS2. , 2013, Nano letters.

[111]  Zhong Lin Wang,et al.  GaN nanobelt-based strain-gated piezotronic logic devices and computation. , 2013, ACS nano.

[112]  Zhong Lin Wang,et al.  Nanogenerator based on zinc blende CdTe micro/nanowires , 2013 .

[113]  Ping Zhao,et al.  Piezoelectric‐Polarization‐Enhanced Photovoltaic Performance in Depleted‐Heterojunction Quantum‐Dot Solar Cells , 2013, Advanced materials.

[114]  Zheng Zhang,et al.  Enhanced photoresponse of ZnO nanorods-based self-powered photodetector by piezotronic interface engineering , 2014 .

[115]  Li-Wei Tu,et al.  Effects of free carriers on piezoelectric nanogenerators and piezotronic devices made of GaN nanowire arrays. , 2014, Small.

[116]  X. Bai,et al.  In situ transmission electron microscopy investigation on fatigue behavior of single ZnO wires under high-cycle strain. , 2014, Nano letters (Print).

[117]  K. Lee,et al.  Depletion width engineering via surface modification for high performance semiconducting piezoelectric nanogenerators , 2014 .

[118]  Q. Fu,et al.  Tailoring Exciton Dynamics by Elastic Strain‐Gradient in Semiconductors , 2013, Advanced materials.

[119]  T. Mueller,et al.  Solar-energy conversion and light emission in an atomic monolayer p-n diode. , 2013, Nature Nanotechnology.

[120]  Lili Xing,et al.  Realizing room-temperature self-powered ethanol sensing of Au/ZnO nanowire arrays by coupling the piezotronics effect of ZnO and the catalysis of noble metal , 2014 .

[121]  H. Andersson,et al.  Piezoelectric gated ZnO nanowire diode studied by in situ TEM probing , 2014 .

[122]  J. Rödel,et al.  Bulk ZnO as piezotronic pressure sensor , 2014 .

[123]  Kaustav Banerjee,et al.  Computational Study of Metal Contacts to Monolayer Transition-Metal Dichalcogenide Semiconductors , 2014 .

[124]  J. Rogers,et al.  Silk-based resorbable electronic devices for remotely controlled therapy and in vivo infection abatement , 2014, Proceedings of the National Academy of Sciences.

[125]  Zhong Lin Wang,et al.  Optimizing performance of silicon-based p-n junction photodetectors by the piezo-phototronic effect. , 2014, ACS nano.

[126]  M. Pea,et al.  The Clash of Mechanical and Electrical Size‐Effects in ZnO Nanowires and a Double Power Law Approach to Elastic Strain Engineering of Piezoelectric and Piezotronic Devices , 2014, Advanced materials.

[127]  Aaron M. Jones,et al.  Electrically tunable excitonic light-emitting diodes based on monolayer WSe2 p-n junctions. , 2013, Nature nanotechnology.

[128]  M. Pea,et al.  Current–Voltage Characteristics of ZnO Nanowires Under Uniaxial Loading , 2014, IEEE Transactions on Nanotechnology.

[129]  Zhong Lin Wang,et al.  Piezotronics and piezo-phototronics—fundamentals and applications , 2014 .

[130]  Paul M. Weaver,et al.  Improved performance of p–n junction-based ZnO nanogenerators through CuSCN-passivation of ZnO nanorods , 2014 .

[131]  Weiming Du,et al.  Piezotronic effect on ZnO nanowire film based temperature sensor. , 2014, ACS applied materials & interfaces.

[132]  Mohammad Khaja Nazeeruddin,et al.  Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts , 2014, Science.

[133]  Qingliang Liao,et al.  Piezotronic interface engineering on ZnO/Au-based Schottky junction for enhanced photoresponse of a flexible self-powered UV detector. , 2014, ACS applied materials & interfaces.

[134]  Lo-Yueh Chang,et al.  Imaging and characterization of piezoelectric potential in a single bent ZnO microwire , 2014 .

[135]  Strain-enhanced cable-type 3D UV photodetecting of ZnO nanowires on a Ni wire by coupling of piezotronics effect and pn junction. , 2014, Optics express.

[136]  Pei Lin,et al.  Enhanced photoresponse of Cu2O/ZnO heterojunction with piezo-modulated interface engineering , 2014, Nano Research.

[137]  Zhong Lin Wang,et al.  Solution-derived ZnO homojunction nanowire films on wearable substrates for energy conversion and self-powered gesture recognition. , 2014, Nano letters.

[138]  Zhong Lin Wang,et al.  Theoretical Study of Piezo‐phototronic Nano‐LEDs , 2014, Advanced materials.

[139]  Zhong Lin Wang,et al.  Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics , 2014, Nature.

[140]  Ren Zhu,et al.  Separation of the piezotronic and piezoresistive effects in a zinc oxide nanowire , 2014, Nanotechnology.

[141]  Zhong Lin Wang,et al.  Piezotronic effect enhanced Schottky-contact ZnO micro/nanowire humidity sensors , 2014, Nano Research.

[142]  P. Jarillo-Herrero,et al.  Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide. , 2013, Nature nanotechnology.

[143]  A. M. van der Zande,et al.  Atomically thin p-n junctions with van der Waals heterointerfaces. , 2014, Nature nanotechnology.

[144]  Jianhua Zhao,et al.  Remarkable and Crystal‐Structure‐Dependent Piezoelectric and Piezoresistive Effects of InAs Nanowires , 2015, Advanced materials.

[145]  Mingzeng Peng,et al.  High-resolution dynamic pressure sensor array based on piezo-phototronic effect tuned photoluminescence imaging. , 2015, ACS nano.

[146]  Caofeng Pan,et al.  Temperature Dependence of the Piezophototronic Effect in CdS Nanowires , 2015 .

[147]  Kai Wang,et al.  Enhanced Broad Band Photodetection through Piezo‐Phototronic Effect in CdSe/ZnTe Core/Shell Nanowire Array , 2015 .

[148]  M. Migliorato,et al.  Piezoelectric field enhancement in III-V core-shell nanowires , 2015 .

[149]  Richard G Hennig,et al.  Ab Initio Prediction of Piezoelectricity in Two-Dimensional Materials. , 2015, ACS nano.

[150]  F. M. Peeters,et al.  Promising Piezoelectric Performance of Single Layer Transition-Metal Dichalcogenides and Dioxides , 2015 .

[151]  Xudong Wang,et al.  Piezotronic-Enhanced Photoelectrochemical Reactions in Ni(OH)2-Decorated ZnO Photoanodes. , 2015, The journal of physical chemistry letters.

[152]  Yong Ding,et al.  Piezo-phototronic Effect Enhanced UV/Visible Photodetector Based on Fully Wide Band Gap Type-II ZnO/ZnS Core/Shell Nanowire Array. , 2015, ACS nano.

[153]  Piezoelectric Effects on the Exciton Dissociation Rate in Organic-Inorganic Hybrid Systems , 2015 .

[154]  Pei Lin,et al.  Enhanced performance of ZnO piezotronic pressure sensor through electron-tunneling modulation of MgO nanolayer. , 2015, ACS applied materials & interfaces.

[155]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS , 2015, 1508.06222.

[156]  P. Ye,et al.  Al2O3 on Black Phosphorus by Atomic Layer Deposition: An in Situ Interface Study. , 2015, ACS applied materials & interfaces.

[157]  Caofeng Pan,et al.  Enhancing Light Emission of ZnO‐Nanofilm/Si‐Micropillar Heterostructure Arrays by Piezo‐Phototronic Effect , 2015, Advanced materials.

[158]  Zhong Lin Wang,et al.  Dynamic Pressure Mapping of Personalized Handwriting by a Flexible Sensor Matrix Based on the Mechanoluminescence Process , 2015, Advanced materials.

[159]  R. Danzer,et al.  Piezotronically Modified Double Schottky Barriers in ZnO Varistors , 2015, Advanced materials.

[160]  Lain-Jong Li,et al.  Piezoelectric effect in chemical vapour deposition-grown atomic-monolayer triangular molybdenum disulfide piezotronics , 2015, Nature Communications.

[161]  Lijie Li,et al.  Quantum simulation of ZnO nanowire piezotronics , 2015, 1505.05665.

[162]  Zheng Zhang,et al.  Strain-modulation and service behavior of Au–MgO–ZnO ultraviolet photodetector by piezo-phototronic effect , 2015, Nano Research.

[163]  Wenbin Li,et al.  Piezoelectricity in two-dimensional group-III monochalcogenides , 2015, Nano Research.

[164]  Zi Jing Wong,et al.  Observation of piezoelectricity in free-standing monolayer MoS₂. , 2015, Nature nanotechnology.

[165]  Zhong Lin Wang,et al.  Piezotronic effect enhanced detection of flammable/toxic gases by ZnO micro/nanowire sensors , 2015 .

[166]  Yue Zheng,et al.  Exponential size-dependent tunability of strain on the transport behavior in ZnO tunnel junctions: an ab initio study. , 2015, Physical chemistry chemical physics : PCCP.

[167]  Allister F. McGuire,et al.  A skin-inspired organic digital mechanoreceptor , 2015, Science.

[168]  Caofeng Pan,et al.  Enhanced emission intensity of vertical aligned flexible ZnO nanowire/p-polymer hybridized LED array by piezo-phototronic effect , 2015 .

[169]  Jianhua Hao,et al.  White and green light emissions of flexible polymer composites under electric field and multiple strains , 2015 .

[170]  Ning Wang,et al.  Piezotronic-effect enhanced drug metabolism and sensing on a single ZnO nanowire surface with the presence of human cytochrome P450. , 2015, ACS nano.

[171]  Yen-Yu Chen,et al.  Self-powered n-MgxZn1-xO/p-Si photodetector improved by alloying-enhanced piezopotential through piezo-phototronic effect , 2015 .

[172]  Dong Yeong Kim,et al.  Correlative High‐Resolution Mapping of Strain and Charge Density in a Strained Piezoelectric Multilayer , 2015 .

[173]  Zhong Lin Wang,et al.  Density functional studies on edge-contacted single-layer MoS2 piezotronic transistors , 2015 .

[174]  Lateral piezopotential-gated field-effect transistor of ZnO nanowires , 2015 .

[175]  Jie Shan,et al.  Strongly enhanced charge-density-wave order in monolayer NbSe2. , 2015, Nature nanotechnology.

[176]  Caofeng Pan,et al.  Piezo‐phototronic Boolean Logic and Computation Using Photon and Strain Dual‐Gated Nanowire Transistors , 2015, Advanced materials.

[177]  Xudong Wang,et al.  Ferroelectric Polarization-Enhanced Photoelectrochemical Water Splitting in TiO2-BaTiO3 Core-Shell Nanowire Photoanodes. , 2015, Nano letters.

[178]  P. Sharma,et al.  Flexoelectricity in two-dimensional crystalline and biological membranes. , 2015, Nanoscale.

[179]  D. Muller,et al.  Controlling band alignments by artificial interface dipoles at perovskite heterointerfaces , 2015, Nature Communications.

[180]  Salvatore Celozzi,et al.  Thermal-electric model for piezoelectric ZnO nanowires , 2015, Nanotechnology.

[181]  Ruomeng Yu,et al.  Temperature Dependence of the Piezotronic and Piezophototronic Effects in a‐axis GaN Nanobelts , 2015, Advanced materials.

[182]  Magnus Willander,et al.  Piezotronic effect enhanced nanowire sensing of H2O2 released by cells , 2015 .

[183]  Zhong Lin Wang,et al.  Influence of external electric field on piezotronic effect in ZnO nanowires , 2015, Nano Research.

[184]  J. Hao,et al.  Magnetic‐Induced Luminescence from Flexible Composite Laminates by Coupling Magnetic Field to Piezophotonic Effect , 2015, Advanced materials.

[185]  Yen-Chih Chen,et al.  Ultrasensitive Thin‐Film‐Based AlxGa1−xN Piezotronic Strain Sensors via Alloying‐Enhanced Piezoelectric Potential , 2015, Advanced materials.

[186]  Y. Liu,et al.  Piezo‐Phototronic UV/Visible Photosensing with Optical‐Fiber–Nanowire Hybridized Structures , 2015, Advanced materials.

[187]  Zhong Lin Wang,et al.  Piezo-Phototronic Effect Controlled Dual-Channel Visible light Communication (PVLC) Using InGaN/GaN Multiquantum Well Nanopillars. , 2015, Small.

[188]  A. Kis,et al.  Piezoresistivity and Strain-induced Band Gap Tuning in Atomically Thin MoS2. , 2015, Nano letters.

[189]  A. Neto,et al.  Enhanced piezoelectricity and modified dielectric screening of two-dimensional group-IV monochalcogenides , 2015, 1511.01645.

[190]  Dongxu Zhao,et al.  Large-scale horizontally aligned ZnO microrod arrays with controlled orientation, periodic distribution as building blocks for chip-in piezo-phototronic LEDs. , 2015, Small.

[191]  Zhong Lin Wang,et al.  Piezotronic Effect in Strain-Gated Transistor of a-Axis GaN Nanobelt. , 2015, ACS nano.

[192]  Caofeng Pan,et al.  Flexible and Controllable Piezo‐Phototronic Pressure Mapping Sensor Matrix by ZnO NW/p‐Polymer LED Array , 2015 .

[193]  Jianhua Hao,et al.  Stimuli responsive upconversion luminescence nanomaterials and films for various applications. , 2015, Chemical Society reviews.

[194]  Yan Zhang,et al.  First principle simulations of piezotronic transistors , 2015 .

[195]  Yue Zhang,et al.  Influence of the carrier concentration on the piezotronic effect in a ZnO/Au Schottky junction. , 2015, Nanoscale.

[196]  Zhong Lin Wang,et al.  Enhanced ferroelectric-nanocrystal-based hybrid photocatalysis by ultrasonic-wave-generated piezophototronic effect. , 2015, Nano letters.

[197]  Wanchul Seung,et al.  Active Matrix Electronic Skin Strain Sensor Based on Piezopotential‐Powered Graphene Transistors , 2015, Advanced materials.

[198]  S. Meguid,et al.  On the piezoelectric potential of gallium nitride nanotubes , 2015 .

[199]  Zheng Zhang,et al.  Highly efficient piezotronic strain sensors with symmetrical Schottky contacts on the monopolar surface of ZnO nanobelts. , 2015, Nanoscale.

[200]  Yang Yang,et al.  Piezotronic transistors in nonlinear circuit: Model and simulation , 2015 .

[201]  Weiguo Hu,et al.  Piezotronic Effect in Polarity-Controlled GaN Nanowires. , 2015, ACS nano.

[202]  J. Rödel,et al.  Varistor piezotronics: Mechanically tuned conductivity in varistors , 2015 .

[203]  Li Yang,et al.  Giant piezoelectricity of monolayer group IV monochalcogenides. , 2016 .

[204]  Caihong Liu,et al.  Flexible Self-Powered GaN Ultraviolet Photoswitch with Piezo-Phototronic Effect Enhanced On/Off Ratio. , 2016, ACS nano.

[205]  Zhong Lin Wang,et al.  Strain-Gated Field Effect Transistor of a MoS2-ZnO 2D-1D Hybrid Structure. , 2016, ACS nano.

[206]  Yong Qin,et al.  Piezotronic Effect Enhanced Photocatalysis in Strained Anisotropic ZnO/TiO₂ Nanoplatelets via Thermal Stress. , 2016, ACS nano.

[207]  Lizhong Hu,et al.  Piezoelectric effect enhancing decay time of p-NiO/n-ZnO ultraviolet photodetector , 2016 .