Compressive properties of porous Ti–Al alloys fabricated by reaction synthesis using a space holder powder

[1]  Rui Yang,et al.  Electron Beam Melted Beta-type Ti-24Nb-4Zr-8Sn Porous Structures With High Strength-to-Modulus Ratio , 2016 .

[2]  M. Kobashi,et al.  Hierarchical open cellular porous TiAl manufactured by space holder process , 2013 .

[3]  M. Kobashi,et al.  Foaming behavior of long-scale Al–Ti intermetallic foam by SHS mode combustion reaction , 2013 .

[4]  A. K. Jha,et al.  Highly porous open cell Ti-foam using NaCl as temporary space holder through powder metallurgy route , 2013 .

[5]  John Banhart,et al.  Light‐Metal Foams—History of Innovation and Technological Challenges , 2013 .

[6]  Yadir Torres,et al.  Processing and characterization of porous titanium for implants by using NaCl as space holder , 2012 .

[7]  S. Arwade,et al.  Steel foam for structures: A review of applications, manufacturing and material properties , 2012 .

[8]  M. Kobashi,et al.  Effect of elemental powder blending ratio on combustion foaming behavior of porous Al–Ti intermetallics and Al3Ti/Al composites , 2010 .

[9]  W. Niu,et al.  Processing and properties of porous titanium using space holder technique , 2009 .

[10]  John Banhart,et al.  Porous Metals and Metallic Foams: Current Status and Recent Developments , 2008 .

[11]  J. Planell,et al.  Mechanical properties of nickel–titanium foams for reconstructive orthopaedics , 2008 .

[12]  A. Mortensen,et al.  Processing of NaCl powders of controlled size and shape for , 2004 .

[13]  David C. Dunand,et al.  Processing of Titanium Foams , 2004 .

[14]  D. Dunand,et al.  Effect of thermal history on the superplastic expansion of argon-filled pores in titanium: Part I kinetics and microstructure , 2004 .

[15]  T. Nakano,et al.  Orientation dependence of fracture behavior of Ti3Al single crystals with D019 structure , 1996 .

[16]  H. Inui,et al.  Low-temperature deformation of single crystals of a DO19 compound with an off-stoichiometric composition (Ti-36·5 at.% Al) , 1994 .

[17]  Y. Minonishi Plastic deformation of single crystals of Ti3Al with D019 structure , 1991 .

[18]  D. Shechtman,et al.  The deformation and fracture of Ti3Al at elevated temperatures , 1980 .

[19]  M. Kobashi,et al.  X-ray CT observation and analysis of compressive deformation behavior of syntactic foam/aluminum foam interpenetrating phase composites , 2014 .

[20]  M. Kobashi,et al.  Effects of chemical composition and skin layer on compression properties of porous aluminum , 2013 .

[21]  N. Muhamad,et al.  Processing titanium foams using tapioca starch as a space holder , 2012 .

[22]  T. Hamada,et al.  Effect of Foaming Condition in the Melt on Cell Structure and Compression Strength of Porous Aluminum , 2008 .

[23]  Frantisek Simancik,et al.  Compressive strength of aluminium foams , 2004 .

[24]  J. Banhart Manufacture, characterisation and application of cellular metals and metal foams , 2001 .