Dissipationless Merging and the Assembly of Central Galaxies

We reanalyze the galaxy-mass correlation function measured by the Sloan Digital Sky Survey to obtain host dark matter halo masses at galaxy and galaxy-group scales. We extend the data to galaxy clusters in the 2MASS catalog and study the relation between central galaxy luminosity and halo mass. While the central galaxy luminosity scales as ~M0.7 to M0.8 at low masses, the relation flattens to shallower than ~M0.3 above ~4 × 1013 M☉. The total luminosity of galaxies in the halo, however, continues to grow as a power law ~M0.8-M0.9. Starting from the hypothesis that the central galaxies grow by hierarchical merging ("galactic cannibalism"), we develop a simple model for the evolution of their luminosities as a consequence of the accretion of satellite galaxies, tracking the merging of dark matter halos. The luminosity-mass relation flattens when the timescale on which dynamical friction induces orbital decay in the satellite galaxies exceeds the age of the dark matter halo. Then the growth of the central galaxy is suppressed, as it can cannibalize only the rare, massive satellite galaxies. The model takes the dependence of the total luminosity of galaxies in a halo on its mass and the global galaxy luminosity function as input and reproduces the observed central galaxy luminosity-mass relation over 3 decades in halo mass, 1012-1015 M☉. The success of the model suggests that gas cooling and subsequent star formation did not play an important role in the final assembly of central galaxies from sub-L⋆ precursors.

[1]  H. Mo,et al.  Galaxy occupation statistics of dark matter haloes: observational results , 2004, astro-ph/0410114.

[2]  A. Fabian Active galaxies and cluster gas , 2004, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[3]  J. Mohr,et al.  K-band Properties of Galaxy Clusters and Groups: Brightest Cluster Galaxies and Intracluster Light , 2004, astro-ph/0408557.

[4]  D. Madgwick,et al.  The 2dF Galaxy Redshift Survey: Luminosity functions by density environment and galaxy type , 2004, astro-ph/0407537.

[5]  J. Bullock,et al.  Multiphase galaxy formation: high-velocity clouds and the missing baryon problem , 2004, astro-ph/0406632.

[6]  J. Ostriker,et al.  Linking halo mass to galaxy luminosity , 2004, astro-ph/0402500.

[7]  J. Mohr,et al.  K-Band Properties of Galaxy Clusters and Groups: Luminosity Function, Radial Distribution, and Halo Occupation Number , 2004, astro-ph/0402308.

[8]  Potsdam,et al.  The Dark Side of the Halo Occupation Distribution , 2003, astro-ph/0308519.

[9]  J. Binney On the origin of the galaxy luminosity function , 2003, astro-ph/0308172.

[10]  Garching,et al.  Substructures in cold dark matter haloes , 2003, astro-ph/0306205.

[11]  A. Connolly,et al.  The Galaxy-Mass Correlation Function Measured from Weak Lensing in the Sloan Digital Sky Survey , 2003, astro-ph/0312036.

[12]  R. Davé,et al.  The IGM-Galaxy Connection: The Line of Sight to 3C 273 , 2003 .

[13]  Durham,et al.  What Shapes the Luminosity Function of Galaxies? , 2003, astro-ph/0302450.

[14]  Edward J. Wollack,et al.  First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Determination of Cosmological Parameters , 2003, astro-ph/0302209.

[15]  R. Sheth,et al.  Halo Models of Large Scale Structure , 2002, astro-ph/0206508.

[16]  G. Kauffmann,et al.  Understanding the results of galaxy-galaxy lensing using galaxy-mass correlation in numerical simulations , 2002, astro-ph/0205546.

[17]  U. Seljak,et al.  Virial masses of galactic haloes from galaxy–galaxy lensing: theoretical modelling and application to Sloan Digital Sky Survey data , 2002, astro-ph/0201448.

[18]  R. Wechsler,et al.  The Astrophysical Journal, in press Preprint typeset using L ATEX style emulateapj v. 14/09/00 CONCENTRATIONS OF DARK HALOS FROM THEIR ASSEMBLY HISTORIES , 2001 .

[19]  C. Conselice,et al.  On the Nature of the NGC 1275 System , 2001, astro-ph/0108019.

[20]  M. Milosavljevic,et al.  Formation of Galactic Nuclei , 2001, astro-ph/0103350.

[21]  A. Fabian,et al.  On the soft X-ray spectrum of cooling flows , 2000, astro-ph/0010509.

[22]  R. Somerville,et al.  Profiles of dark haloes: evolution, scatter and environment , 1999, astro-ph/9908159.

[23]  M. Fellhauer,et al.  SUPERBOX – an efficient code for collisionless galactic dynamics , 2000, astro-ph/0007226.

[24]  Walter A. Siegmund,et al.  The Sloan Digital Sky Survey: Technical Summary , 2000, astro-ph/0006396.

[25]  H. M. P. Couchman,et al.  The mass function of dark matter haloes , 2000, astro-ph/0005260.

[26]  S. White,et al.  Sinking satellites and the heating of galaxy discs , 1998, astro-ph/9809412.

[27]  J. Dubinski The Origin of the Brightest Cluster Galaxies , 1997, astro-ph/9709102.

[28]  S. White,et al.  A Universal Density Profile from Hierarchical Clustering , 1996, astro-ph/9611107.

[29]  R. Bender,et al.  Dynamically hot galaxies. I - Structural properties , 1992 .

[30]  T. Bontekoe,et al.  DECAY OF GALAXY SATELLITE ORBITS BY DYNAMIC FRICTION , 1987 .

[31]  D. Merritt Relaxation and tidal stripping in rich clusters of galaxies. III. Growth of a massive central galaxy , 1985 .

[32]  S. Tremaine,et al.  Dynamical friction in spherical systems , 1984 .

[33]  M. Rees,et al.  Core condensation in heavy halos: a two-stage theory for galaxy formation and clustering , 1978 .

[34]  M. Rees,et al.  Cooling, dynamics and fragmentation of massive gas clouds: clues to the masses and radii of galaxies and clusters , 1977 .

[35]  S. Tremaine,et al.  Another evolutionary correction to the luminosity of giant galaxies , 1975 .

[36]  Subrahmanyan Chandrasekhar,et al.  Dynamical friction. I. General considerations: the coefficient of dynamical friction , 1943 .