Generating Multiple Imputations for Matrix Sampling Data Analyzed With Item Response Models

Sample survey designs in which each participant is administered a subset of the items contained in a complete survey instrument are becoming an increasingly popular method of reducing respondent burden (Mislevy, Beaton, Kaplan, Sheehan 1992; Raghunathan & Grizzle, 1995; Wacholder, Carroll, Pee, Gail 1994). Data from these survey designs can be analyzed using multiple imputation methodology that generates several imputed values for the missing data and thus yields several complete data sets. These data sets are then analyzed using complete data estimators and their standard errors (Rubin, 1987b). Generating the imputed data sets, however, can be very difficult. We describe improvements to the methods currently used to generate the imputed data sets for item response models summarizing educational data collected by the National Assessment of Educational Progress (NAEP), an ongoing collection of samples of 4th, 8th, and 12th grade students in the United States. The improved approximations produce small to moderate changes in commonly reported estimates, with the larger changes associated with an increasing amount of missing data. The improved approximations produce larger standard errors.

[1]  L. Zeger,et al.  Efficient Matrix Sampling Instruments for Correlated Latent Traits: Examples from the National Assessment of Educational Progress , 1997 .

[2]  Raymond J. Adams,et al.  Multilevel Item Response Models: An Approach to Errors in Variables Regression , 1997 .

[3]  Xiao-Li Meng,et al.  Fitting Full-Information Item Factor Models and an Empirical Investigation of Bridge Sampling , 1996 .

[4]  M. Lindstrom,et al.  A survey of methods for analyzing clustered binary response data , 1996 .

[5]  Tom Leonard,et al.  The Matrix-Logarithmic Covariance Model , 1996 .

[6]  Robert J. Mislevy,et al.  DEALING WITH UNCERTAINTY ABOUT ITEM PARAMETERS: EXPECTED RESPONSE FUNCTIONS , 1994 .

[7]  R. Carroll,et al.  The partial questionnaire design for case-control studies. , 1994, Statistics in medicine.

[8]  N. Thomas,et al.  Asymptotic Corrections for Multivariate Posterior Moments with Factored Likelihood Functions , 1993 .

[9]  S. Chib,et al.  Bayesian analysis of binary and polychotomous response data , 1993 .

[10]  Hua-Hua Chang,et al.  The asymptotic posterior normality of the latent trait in an IRT model , 1993 .

[11]  J. Albert Bayesian Estimation of Normal Ogive Item Response Curves Using Gibbs Sampling , 1992 .

[12]  Robert J. Mislevy,et al.  Estimating Population Characteristics From Sparse Matrix Samples of Item Responses , 1992 .

[13]  E. Muraki A GENERALIZED PARTIAL CREDIT MODEL: APPLICATION OF AN EM ALGORITHM , 1992 .

[14]  K. Rust,et al.  Chapter 5: Population Inferences and Variance Estimation for NAEP Data , 1992 .

[15]  E. Muraki,et al.  Chapter 3: Scaling Procedures in NAEP , 1992 .

[16]  K. Rust,et al.  Population Inferences and Variance Estimation for NAEP Data , 1992 .

[17]  Eugene G. Johnson,et al.  Scaling Procedures in NAEP , 1992 .

[18]  Donald B. Rubin,et al.  EM and beyond , 1991 .

[19]  Robert J. Mislevy,et al.  Randomization-based inference about latent variables from complex samples , 1991 .

[20]  Scott L. Zeger,et al.  Generalized linear models with random e ects: a Gibbs sampling approach , 1991 .

[21]  Eugene G. Johnson,et al.  Focusing the New Design: The NAEP 1988 Technical Report. , 1990 .

[22]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[23]  R. Tsutakawa,et al.  The effect of uncertainty of item parameter estimation on ability estimates , 1990 .

[24]  C. N. Morris,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[25]  R. Bellman Introduction to Matrix Analysis , 1972 .

[26]  N. L. Johnson Linear Statistical Inference and Its Applications , 1966 .

[27]  Calyampudi R. Rao,et al.  Linear Statistical Inference and Its Applications. , 1975 .

[28]  Hua-Hua Chang,et al.  The asymptotic posterior normality of the latent trait for polytomous IRT models , 1996 .

[29]  Trivellore E. Raghunathan,et al.  A Split Questionnaire Survey Design , 1995 .

[30]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[31]  M. Karim Generalized Linear Models With Random Effects , 1991 .

[32]  Robert J. Mislevy,et al.  BILOG 3 : item analysis and test scoring with binary logistic models , 1990 .