Composition and union of general algorithms of optimization

The study of the convergence of algorithms of optimization obtained by composition or union, taken in sense of the relaxation, is done. After having recalled the Zangwill’s theorem and given two extensions we study the obtainment of generalized fixed points in the framework of the composition or the union of algorithms obtained in a free steering way for, firstly functions having a unique maximum over some particular subsets, ranges of the current point, and secondly for general functions. The validity of the different hypotheses is discussed through some examples.

[1]  J. Gillis,et al.  Matrix Iterative Analysis , 1961 .

[2]  A. Ostrowski Solution of equations and systems of equations , 1967 .

[3]  P. Huard,et al.  A Method of Centers by Upper-Bounding Functions with Applications , 1970 .

[4]  E. M. L. Beale,et al.  Nonlinear Programming: A Unified Approach. , 1970 .

[5]  James M. Ortega,et al.  Iterative solution of nonlinear equations in several variables , 2014, Computer science and applied mathematics.

[6]  A. Auslender Méthodes numériques pour la décomposition et la minimisation de fonctions non différentiables , 1971 .

[7]  B. V. Shah,et al.  Integer and Nonlinear Programming , 1971 .

[8]  A General Convergence Result for Unconstrained Minimization Methods , 1972 .

[9]  E. Polak,et al.  Computational methods in optimization : a unified approach , 1972 .

[10]  Jacques Dubois Technical Note - Theorems of Convergence for Improved Nonlinear Programming Algorithms , 1973, Oper. Res..

[11]  R. Glowinski,et al.  Sur des méthodes d'optimisation par relaxation , 1973 .

[12]  B. Martinet,et al.  Methodes de Decomposition pour la Minimisation d’une Fonction sur un Espace Produit , 1974 .

[13]  F. Robert Iterations chaotiques série-parallele pour des équations non lineaires de point fixe , 1974 .

[14]  G. G. Meyer A systematic approach to the synthesis of algorithms , 1975 .

[15]  P. Huard,et al.  Optimization algorithms and point-to-set-maps , 1975, Math. Program..

[16]  J. C. Miellou,et al.  Algorithmes de relaxation chaotique à retards , 1975 .

[17]  R. Meyer On the Convergence of Algorithms with Restart , 1976 .

[18]  Robert R. Meyer,et al.  Sufficient Conditions for the Convergence of Monotonic Mathematical Programming Algorithms , 1976, J. Comput. Syst. Sci..

[19]  Gérard G. L. Meyer,et al.  Conditions de convergence pour les algorithmes itératifs monotones, autonomes et non déterministes , 1977 .

[20]  R. Meyer A Comparison of the Forcing Function and Point-to-Set Mapping Approaches to Convergence Analysis , 1977 .

[21]  Convergence Conditions for a Type of Algorithm Model , 1977 .

[22]  P. Huard Extensions of Zangwill’s theorem , 1979 .