Exploring the potential of di-boron di-nitride monolayer (o-B2N2) as a K-ion battery anode: A DFT study

[1]  Wenhui Ma,et al.  High-performance silicon carbon anodes based on value-added recycling strategy of end-of-life photovoltaic modules , 2023, Energy.

[2]  P. Zhang,et al.  State of charge estimation of lithium-ion battery based on extended Kalman filter algorithm , 2023, Frontiers in Energy Research.

[3]  K. Cai,et al.  Efficient sulfur host based on Sn doping to construct Fe2O3 nanospheres with high active interface structure for lithium-sulfur Batteries , 2022, Applied Surface Science.

[4]  Wen Zhang,et al.  Vacancy-engineered half-metallicity and magnetic anisotropy in magnetic CrSI semiconductor monolayer , 2022, Journal of Alloys and Compounds.

[5]  B. Pathak,et al.  Strong Anisotropy and Band Gap Engineering with Mechanical Strains in Two-Dimensional Orthorhombic Diboron Dinitride (O-B2N2) , 2022, Applied Surface Science.

[6]  I. Gates,et al.  Screening MXenes for novel anode material of lithium-ion batteries with high capacity and stability: A DFT calculation , 2021 .

[7]  Chunmei Tang,et al.  Promising anode material BN/VS2 heterostructure for the Li-ion battery: The first-principles study , 2021 .

[8]  Jing Lu,et al.  Is graphite nanomesh a promising anode for the Na/K-Ions batteries? , 2021 .

[9]  M. Solimannejad,et al.  High-Performance Hydrogen Storage Properties of Li-Decorated B2N2 Nanosheets: A Periodic Density Functional Theory Study , 2021 .

[10]  Wei Wei,et al.  Modulating a 2D heterointerface with g-C3N4 mesh layers: a suitable hetero-layered architecture for high-power and long-life energy storage , 2021 .

[11]  R. Ahuja,et al.  Thermodynamics and kinetics of 2D g-GeC monolayer as an anode materials for Li/Na-ion batteries , 2021, Journal of Power Sources.

[12]  Jun-rong Zhang,et al.  Theoretical investigation of Ti2B monolayer as powerful anode material for Li/Na batteries with high storage capacity , 2021, Applied Surface Science.

[13]  Rencheng Jin,et al.  Flexible borophosphene monolayer: A potential Dirac anode for high-performance non-lithium ion batteries , 2021 .

[14]  Jiamiao Xie,et al.  Reducing Diffusion-Induced Stress of Bilayer Electrode System by Introducing Pre-Strain in Lithium-Ion Battery , 2020 .

[15]  F. Ciucci,et al.  MoSe2 nanosheets embedded in nitrogen/phosphorus co-doped carbon/graphene composite anodes for ultrafast sodium storage , 2020 .

[16]  Yongbing Tang,et al.  Molecular grafting towards high-fraction active nanodots implanted in N-doped carbon for sodium dual-ion batteries , 2020, National science review.

[17]  Zhiming M. Wang,et al.  Flexible C6BN Monolayers As Promising Anode Materials for High-Performance K-Ion Batteries , 2020, ACS applied materials & interfaces.

[18]  Quan Li,et al.  Ultrahigh capacity 2D anode materials for lithium/sodium-ion batteries: an entirely planar B7P2 monolayer with suitable pore size and distribution , 2020 .

[19]  S. Nezir,et al.  Monolayer diboron dinitride: Direct band-gap semiconductor with high absorption in the visible range , 2020 .

[20]  Xiaomin Zhang,et al.  Mn2C monolayer: A superior anode material offering good conductivity, high storage capacity and ultrafast ion diffusion for Li-ion and Na-ion batteries , 2020 .

[21]  C. Lee,et al.  Rational design of a PC3 monolayer: A high-capacity, rapidly charging anode material for sodium-ion batteries , 2020 .

[22]  B. Xiao,et al.  Highly Flexible Hydrogen Boride Monolayers as Potassium-Ion Battery Anodes for Wearable Electronics. , 2019, ACS applied materials & interfaces.

[23]  Xiaoming Zhang,et al.  Two-Dimensional GaN: An Excellent Electrode Material Providing Fast Ion Diffusion and High Storage Capacity for Li-Ion and Na-Ion Batteries. , 2018, ACS applied materials & interfaces.

[24]  Hui‐Ming Cheng,et al.  Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage , 2018, Nature Chemistry.

[25]  C. V. Singh,et al.  Ultrahigh Storage and Fast Diffusion of Na and K in Blue Phosphorene Anodes. , 2018, ACS applied materials & interfaces.

[26]  A. Bekhradnia,et al.  Utility of extrinsic [60] fullerenes as work function type sensors for amphetamine drug detection: DFT studies , 2017 .

[27]  T. Zhao,et al.  Boron phosphide monolayer as a potential anode material for alkali metal-based batteries , 2017 .

[28]  Chun‐Sing Lee,et al.  Dual‐Ion Batteries: A Novel Aluminum–Graphite Dual‐Ion Battery (Adv. Energy Mater. 11/2016) , 2016 .

[29]  Yi Gao,et al.  Structure stability of TiAu4 nanocluster with water adsorption , 2016 .

[30]  Bryan W. Byles,et al.  The role of electronic and ionic conductivities in the rate performance of tunnel structured manganese oxides in Li-ion batteries , 2016 .

[31]  Y. Gogotsi,et al.  Ti₃C₂ MXene as a high capacity electrode material for metal (Li, Na, K, Ca) ion batteries. , 2014, ACS applied materials & interfaces.

[32]  Yubin Hwang,et al.  Comparative study of metal atom adsorption on free-standing h-BN and h-BN/Ni (111) surfaces , 2014 .

[33]  Yubin Hwang,et al.  Lithium Adsorption on Hexagonal Boron Nitride Nanosheet Using Dispersion-Corrected Density Functional Theory Calculations , 2013 .

[34]  A. A. Peyghan,et al.  A Theoretical Study of OH and OCH3 Free Radical Adsorption on a Nanosized Tube of BC2N , 2013, Journal of Cluster Science.

[35]  Qing Tang,et al.  Are MXenes promising anode materials for Li ion batteries? Computational studies on electronic properties and Li storage capability of Ti3C2 and Ti3C2X2 (X = F, OH) monolayer. , 2012, Journal of the American Chemical Society.

[36]  A. Ray,et al.  Carbon- and silicon-capped silicon carbide nanotubes: An ab initio study , 2011 .

[37]  K. Shepard,et al.  Boron nitride substrates for high-quality graphene electronics. , 2010, Nature nanotechnology.

[38]  Xiyuan Sun,et al.  Structures, chemical bonding, magnetisms of small Al-doped zirconium clusters , 2010 .

[39]  E. Aktürk,et al.  Monolayer honeycomb structures of group-IV elements and III-V binary compounds: First-principles calculations , 2009, 0907.4350.

[40]  G. Henkelman,et al.  A grid-based Bader analysis algorithm without lattice bias , 2009, Journal of physics. Condensed matter : an Institute of Physics journal.

[41]  Mehmet Topsakal,et al.  First-principles study of two- and one-dimensional honeycomb structures of boron nitride , 2008, 0812.4454.

[42]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[43]  Y. Chiang,et al.  Microscale Measurements of the Electrical Conductivity of Doped LiFePO4 , 2003 .

[44]  G. Henkelman,et al.  A climbing image nudged elastic band method for finding saddle points and minimum energy paths , 2000 .

[45]  Mark S. Gordon,et al.  General atomic and molecular electronic structure system , 1993, J. Comput. Chem..

[46]  Dan Zhang,et al.  Research progress on transition metal sulfide-based materials as cathode materials for zinc-ion batteries , 2023, Journal of Energy Storage.

[47]  Yichun Liu,et al.  Metallic P3C monolayer as anode for sodium-ion batteries , 2019, Journal of Materials Chemistry A.