Helicene-SPP-Based Chiral Plasmonic Hybrid Structure: Toward Direct Enantiomers SERS Discrimination.

Achieving chiral plasmon response based on the combination of achiral plasmonic nanostructures with highly chiral surrounding medium represents an attractive way for creation of hybrid optically active plasmonic materials. In this work, we present an attractive design and fabrication of chiral plasmon substrates based on a surface plasmon-polariton-supported structure coupled with extremely optically active helicene enantiomers. Such approach allows us to excite chiral plasmon waves and to design optically active surface-enhanced Raman spectroscopy substrates. Its further combination with standard Raman spectroscopy makes possible enantioselective detection/recognition of optical enantiomers with detection limits below those of standard spectral techniques. The chiral optical response of new plasmonic system was observed and controlled by the optical rotation of helicenes. Without necessity of previous chiral separation or implementation of sophisticated experimental equipment, we were able to estimate the concentration of enantiomers in their mixture by using left- or right-handed chiral plasmon substrates.

[1]  Hui Wang,et al.  2D Chiroptical Nanostructures for High‐Performance Photooxidants , 2018 .

[2]  Changlong Hao,et al.  Chiral Shell Core-Satellite Nanostructures for Ultrasensitive Detection of Mycotoxin. , 2018, Small.

[3]  P. Vavassori,et al.  Magnetic Control of the Chiroptical Plasmonic Surfaces. , 2018, Nano letters.

[4]  V. Rotello,et al.  Superchiral Plasmonic Phase Sensitivity for Fingerprinting of Protein Interface Structure. , 2017, ACS nano.

[5]  L. Fekete,et al.  Potential‐Driven On/Off Switch Strategy for the Electrosynthesis of [7]Helicene‐Derived Polymers , 2017 .

[6]  V. Svorcik,et al.  Pretreatment-free selective and reproducible SERS-based detection of heavy metal ions on DTPA functionalized plasmonic platform , 2017 .

[7]  Wei Ma,et al.  Biological Molecules-Governed Plasmonic Nanoparticle Dimers with Tailored Optical Behaviors. , 2017, The journal of physical chemistry letters.

[8]  Kai Guo,et al.  Review of the Functions of Archimedes’ Spiral Metallic Nanostructures , 2017, Nanomaterials.

[9]  Chiroptically Active Metallic Nanohelices with Helical Anisotropy. , 2017, Small.

[10]  Na Liu,et al.  DNA-Nanotechnology-Enabled Chiral Plasmonics: From Static to Dynamic. , 2017, Accounts of chemical research.

[11]  Q. Park,et al.  Microscopic Origin of Surface-enhanced Circular Dichroism , 2017 .

[12]  Christian W. Kuppe,et al.  Chirality and Chiroptical Effects in Metal Nanostructures: Fundamentals and Current Trends , 2017 .

[13]  I. Willner,et al.  Chiroplasmonic DNA-based nanostructures , 2017 .

[14]  Geert Morthier,et al.  Novel Light Source Integration Approaches for Silicon Photonics , 2017 .

[15]  Ruipeng Li,et al.  Plasmonic Chiral Nanostructures: Chiroptical Effects and Applications , 2017 .

[16]  Harald Giessen,et al.  Chiral plasmonics , 2017, Science Advances.

[17]  N. Kotov,et al.  Chiral Inorganic Nanostructures. , 2017, Chemical reviews.

[18]  V. Svorcik,et al.  Large‐Scale, Ultrasensitive, Highly Reproducible and Reusable Smart SERS Platform Based on PNIPAm‐Grafted Gold Grating , 2017 .

[19]  Liuyang Sun,et al.  Chirality detection of enantiomers using twisted optical metamaterials , 2017, Nature Communications.

[20]  Zhiyong Tang,et al.  Circular Dichroism Studies on Plasmonic Nanostructures. , 2017, Small.

[21]  J. Vacek,et al.  Development of separation methods for the chiral resolution of hexahelicenes. , 2016, Journal of chromatography. A.

[22]  A. Govorov,et al.  Orientation-Sensitive Peptide-Induced Plasmonic Circular Dichroism in Silver Nanocubes , 2016 .

[23]  Kamil Záruba,et al.  The Effect of Silver Grating and Nanoparticles Grafting for LSP–SPP Coupling and SERS Response Intensification , 2016 .

[24]  Wei Li,et al.  Circularly polarized light detection with hot electrons in chiral plasmonic metamaterials , 2015, Nature Communications.

[25]  D. Mareš,et al.  Surface Plasmon Polaritons on Silver Gratings for Optimal SERS Response , 2015 .

[26]  J. Vacek,et al.  Synthesis and characterization of a helicene-based imidazolium salt and its application in organic molecular electronics. , 2015, Chemistry.

[27]  Yoshito Y. Tanaka,et al.  Enantioselective discrimination of alcohols by hydrogen bonding: a SERS study. , 2014, Angewandte Chemie.

[28]  Harald Giessen,et al.  Large-area 3D chiral plasmonic structures. , 2013, ACS nano.

[29]  S. Che,et al.  Gold nanorod@chiral mesoporous silica core-shell nanoparticles with unique optical properties. , 2013, Journal of the American Chemical Society.

[30]  Liguang Xu,et al.  Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. , 2012, Journal of the American Chemical Society.

[31]  Yan Gao,et al.  Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. , 2012, Journal of the American Chemical Society.

[32]  E. Hendry,et al.  Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. , 2012, Nano letters.

[33]  S. Bell,et al.  Use of a hydrogel polymer for reproducible surface enhanced Raman optical activity (SEROA). , 2011, Chemical communications.

[34]  A. Govorov Plasmon-Induced Circular Dichroism of a Chiral Molecule in the Vicinity of Metal Nanocrystals. Application to Various Geometries , 2011 .

[35]  R. Naik,et al.  Plasmonic circular dichroism of Peptide-functionalized gold nanoparticles. , 2011, Nano letters.

[36]  A. Hohenau,et al.  Thermo-induced electromagnetic coupling in gold/polymer hybrid plasmonic structures probed by surface-enhanced raman scattering. , 2010, ACS nano.

[37]  M. Pecul,et al.  Circularly polarized component in surface-enhanced Raman spectra , 2010 .

[38]  A. Govorov,et al.  Plasmonic circular dichroism of chiral metal nanoparticle assemblies. , 2010, Nano letters.

[39]  Nisha Shukla,et al.  Enantioselective separation on chiral Au nanoparticles. , 2010, Journal of the American Chemical Society.

[40]  Joseph M Slocik,et al.  Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. , 2010, Nano letters.

[41]  K. G. Thomas,et al.  Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. , 2010, Journal of the American Chemical Society.

[42]  M. Wegener,et al.  Gold Helix Photonic Metamaterial as Broadband Circular Polarizer , 2009, Science.

[43]  Benjamin G. Janesko,et al.  Molecule−Surface Orientational Averaging in Surface Enhanced Raman Optical Activity Spectroscopy , 2009 .

[44]  J. Sýkora,et al.  Synthesis of hexahelicene and 1-methoxyhexahelicene via cycloisomerization of biphenylyl-naphthalene derivatives. , 2009, The Journal of organic chemistry.

[45]  Jeong‐Myeong Ha,et al.  Postsynthetic modification of gold nanoparticles with calix[4]arene enantiomers: origin of chiral surface plasmon resonance. , 2009, Langmuir : the ACS journal of surfaces and colloids.

[46]  Kathleen M. Krause,et al.  Spatially Graded Nanostructured Chiral Films as Tunable Circular Polarizers , 2008 .

[47]  E. Ulin-Avila,et al.  Three-dimensional optical metamaterial with a negative refractive index , 2008, Nature.

[48]  E. Blanch,et al.  Surface enhanced Raman optical activity (SEROA). , 2008, Chemical Society reviews.

[49]  S. Abdali Observation of SERS effect in Raman optical activity, a new tool for chiral vibrational spectroscopy , 2006 .

[50]  Gil Markovich,et al.  Chirality of silver nanoparticles synthesized on DNA. , 2006, Journal of the American Chemical Society.

[51]  K. Kneipp,et al.  Surface-enhanced Raman optical activity on adenine in silver colloidal solution. , 2006, Analytical chemistry.

[52]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[53]  Zheng Cui,et al.  Nanoimprint lithography for planar chiral photonic meta-materials , 2005 .

[54]  K. Philippot,et al.  A case for enantioselective allylic alkylation catalyzed by palladium nanoparticles. , 2004, Journal of the American Chemical Society.