Incorrect interpretation of carbon mass balance biases global vegetation fire emission estimates

[1]  C. Masiello,et al.  Towards a global assessment of pyrogenic carbon from vegetation fires , 2016, Global change biology.

[2]  Atul K. Jain,et al.  Global Carbon Budget 2015 , 2015 .

[3]  G. Saiz,et al.  The Pyrogenic Carbon Cycle , 2015 .

[4]  Gil González-Rodríguez,et al.  Pyrogenic organic matter production from wildfires: a missing sink in the global carbon cycle , 2015, Global change biology.

[5]  Jaclyn M Hall,et al.  Scaling categorical spatial data for earth systems models , 2015, Global change biology.

[6]  A. Gill,et al.  Learning to coexist with wildfire , 2014, Nature.

[7]  G. Saiz,et al.  Pyrogenic carbon from tropical savanna burning: production and stable isotope composition , 2014 .

[8]  Andrew L. Sullivan,et al.  Greenhouse gas emissions from laboratory-scale fires in wildland fuels depend on fire spread mode and phase of combustion , 2014 .

[9]  R. Ball Regulation of atmospheric carbon dioxide by vegetation fires , 2014 .

[10]  M. Moritz,et al.  Climate change‐induced shifts in fire for Mediterranean ecosystems , 2013 .

[11]  F. Hu,et al.  Recent burning of boreal forests exceeds fire regime limits of the past 10,000 years , 2013, Proceedings of the National Academy of Sciences.

[12]  B. DeAngelo,et al.  Bounding the role of black carbon in the climate system: A scientific assessment , 2013 .

[13]  M. Flannigan,et al.  Global wildland fire season severity in the 21st century , 2013 .

[14]  R. Keane Describing wildland surface fuel loading for fire management: a review of approaches, methods and systems , 2013 .

[15]  J. Randerson,et al.  Global burned area and biomass burning emissions from small fires , 2012 .

[16]  S. W. Maier,et al.  Direct measurements of the seasonality of emission factors from savanna fires in northern Australia , 2012 .

[17]  Christopher I. Roos,et al.  The human dimension of fire regimes on Earth , 2011, Journal of biogeography.

[18]  M. G. Ryan,et al.  Continued warming could transform Greater Yellowstone fire regimes by mid-21st century , 2011, Proceedings of the National Academy of Sciences.

[19]  S. K. Akagi,et al.  The Fire INventory from NCAR (FINN): a high resolution global model to estimate the emissions from open burning , 2010 .

[20]  J. Randerson,et al.  Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009) , 2010 .

[21]  S. K. Akagi,et al.  Emission factors for open and domestic biomass burning for use in atmospheric models , 2010 .

[22]  Christopher I. Roos,et al.  Fire in the Earth System , 2009, Science.

[23]  Stefan W. Maier,et al.  Improving estimates of savanna burning emissions for greenhouse accounting in northern Australia: limitations, challenges, applications , 2009 .

[24]  S. Pyne Problems, paradoxes, paradigms: triangulating fire research , 2007 .

[25]  J. Skjemstad,et al.  Formation, transformation and transport of black carbon (charcoal) in terrestrial and aquatic ecosystems. , 2006, The Science of the total environment.

[26]  A. Scott,et al.  The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[27]  W. Hao,et al.  Trace gas emissions from the production and use of domestic biofuels in Zambia measured by open-path Fourier transform infrared spectroscopy , 2003 .

[28]  M. Andreae,et al.  Emission of trace gases and aerosols from biomass burning , 2001 .

[29]  W. Hao,et al.  Emissions of formaldehyde, acetic acid, methanol, and other trace gases from biomass fires in North Carolina measured by airborne Fourier transform infrared spectroscopy , 1999 .

[30]  P. Crutzen,et al.  Black carbon formation by savanna fires: Measurements and implications for the global carbon cycle , 1996 .

[31]  P. Crutzen,et al.  Toward a global estimate of black carbon in residues of vegetation fires representing a sink of atmospheric CO2 and a source of O2 , 1995 .

[32]  D. Griffith,et al.  Trace gas emissions from biomass burning in tropical Australian savannas , 1994 .

[33]  D. Ward,et al.  Airborne measurements of gases and particles from an Alaskan wildfire , 1993 .

[34]  Yoram J. Kaufman,et al.  Smoke and fire characteristics for cerrado and deforestation burns in Brazil: BASE-B experiment , 1992 .

[35]  P. Crutzen,et al.  Importance of biomass burning in the atmospheric budgets of nitrogen-containing gases , 1990, Nature.

[36]  P. Crutzen,et al.  Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning , 1980 .

[37]  P. Crutzen,et al.  Biomass burning as a source of atmospheric gases CO, H2, N2O, NO, CH3Cl and COS , 1979, Nature.