Phosphorescent monometallic and bimetallic two-coordinate Au(I) complexes with N-heterocyclic carbene and aryl ligands

[1]  R. Haiges,et al.  Highly Efficient Deep Blue Luminescence of 2-Coordinate Coinage Metal Complexes Bearing Bulky NHC Benzimidazolyl Carbene , 2020, Frontiers in Chemistry.

[2]  J. López‐de‐Luzuriaga,et al.  Versatile coordinative abilities of perhalophenyl-gold(I) fragments to Xantphos: Influence on the emissive properties , 2020 .

[3]  R. Haiges,et al.  Molecular dynamics of four-coordinate carbene-Cu(I) complexes employing tris(pyrazolyl)borate ligands , 2020 .

[4]  Maksim Y. Livshits,et al.  Trifluoromethylated Phenanthroline Ligands Reduce Excited-State Distortion in Homoleptic Copper(I) Complexes. , 2020, Inorganic chemistry.

[5]  Chunhui Huang,et al.  Two-Coordinate Copper(I)-NHC Complexes: Novel Dual-Emissive Property and Ultralong Room Temperature Phosphorescence. , 2020, Angewandte Chemie.

[6]  M. Zeller,et al.  Photophysical properties of organogold(i) complexes bearing a benzothiazole-2,7-fluorenyl moiety: selection of ancillary ligand influences white light emission. , 2019, Dalton transactions.

[7]  Herbert H. H. Homeier,et al.  Symmetry-Based Design Strategy for Unprecedentedly Fast Decaying Thermally Activated Delayed Fluorescence (TADF). Application to Dinuclear Cu(I) Compounds , 2019, Chemistry of Materials.

[8]  DaeGwi Kim,et al.  Absence of delayed fluorescence and triplet–triplet annihilation in organic light emitting diodes with spatially orthogonal bianthracenes , 2019, Journal of Materials Chemistry C.

[9]  A. J. Blake,et al.  Unequivocal Experimental Evidence of the Relationship between Emission Energies and Aurophilic Interactions. , 2019, Inorganic chemistry.

[10]  Yuguang Ma,et al.  Highly Efficient Blue Fluorescent OLEDs Based on Upper Level Triplet–Singlet Intersystem Crossing , 2019, Advanced materials.

[11]  M. Thompson,et al.  Synthesis and characterization of phosphorescent three-coordinate copper(I) complexes bearing bis(amino)cyclopropenylidene carbene (BAC) , 2018, Inorganica Chimica Acta.

[12]  R. Czerwieniec,et al.  TADF Material Design: Photophysical Background and Case Studies Focusing on CuI and AgI Complexes. , 2017, Chemphyschem : a European journal of chemical physics and physical chemistry.

[13]  R. Czerwieniec,et al.  Thermally Activated Delayed Fluorescence from Ag(I) Complexes: A Route to 100% Quantum Yield at Unprecedentedly Short Decay Time. , 2017, Inorganic chemistry.

[14]  M. Thompson,et al.  Phosphorescent 2-, 3- and 4-coordinate cyclic (alkyl)(amino)carbene (CAAC) Cu(i) complexes. , 2017, Chemical communications.

[15]  T. Taketsugu,et al.  Luminescent Mechanochromic 9-Anthryl Gold(I) Isocyanide Complex with an Emission Maximum at 900 nm after Mechanical Stimulation. , 2017, Journal of the American Chemical Society.

[16]  J. López‐de‐Luzuriaga,et al.  Luminescent aryl-group eleven metal complexes. , 2017, Dalton transactions.

[17]  Yong-Jin Pu,et al.  Fluorescence via Reverse Intersystem Crossing from Higher Triplet States in a Bisanthracene Derivative , 2016, Scientific Reports.

[18]  Andreas Steffen,et al.  C–H Activation of Fluoroarenes: Synthesis, Structure, and Luminescence Properties of Copper(I) and Gold(I) Complexes Bearing 2-Phenylpyridine Ligands , 2016 .

[19]  Yuguang Ma,et al.  Reverse intersystem crossing from upper triplet levels to excited singlet: a ‘hot excition’ path for organic light-emitting diodes , 2015, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[20]  R. Czerwieniec,et al.  Diversity of copper(I) complexes showing thermally activated delayed fluorescence: basic photophysical analysis. , 2015, Inorganic chemistry.

[21]  Hironori Kaji,et al.  A light-emitting mechanism for organic light-emitting diodes: molecular design for inverted singlet–triplet structure and symmetry-controlled thermally activated delayed fluorescence , 2015 .

[22]  U. Monkowius,et al.  Highly efficient luminescence of Cu(I) compounds: thermally activated delayed fluorescence combined with short-lived phosphorescence. , 2015, Journal of the American Chemical Society.

[23]  Markus J. Leitl,et al.  Phosphorescence versus thermally activated delayed fluorescence. Controlling singlet-triplet splitting in brightly emitting and sublimable Cu(I) compounds. , 2014, Journal of the American Chemical Society.

[24]  J. Vicente,et al.  Dinuclear Alkynyl Gold(I) Complexes Containing Bridging N-Heterocyclic Dicarbene Ligands: New Synthetic Routes and Luminescence , 2012 .

[25]  M. Zeller,et al.  Gold(I) styrylbenzene, distyrylbenzene, and distyrylnaphthalene complexes: high emission quantum yields at room temperature. , 2012, Chemistry.

[26]  Andreas F. Rausch,et al.  The triplet state of organo-transition metal compounds. Triplet harvesting and singlet harvesting for efficient OLEDs , 2011 .

[27]  M. Neuburger,et al.  Structural and Photophysical Properties of (Phosphane)gold(I)-Decorated 4,4′-Diethynyl-2,2′-bipyridine Ligands , 2009 .

[28]  Thomas S. Teets,et al.  Mono- and Di-Gold(I) Naphthalenes and Pyrenes: Syntheses, Crystal Structures, and Photophysics , 2009 .

[29]  C. Huang,et al.  Structural, photophysical, and catalytic properties of Au(I) complexes with 4-substituted pyridines. , 2008, Inorganic chemistry.

[30]  M. Zeller,et al.  Gold(I) Pyrenyls: Excited-State Consequences of Carbon−Gold Bond Formation , 2007 .

[31]  T. Tahara,et al.  Real-time observation of the photoinduced structural change of bis(2,9-dimethyl-1,10-phenanthroline)copper(I) by femtosecond fluorescence spectroscopy: a realistic potential curve of the Jahn-Teller distortion. , 2007, Journal of the American Chemical Society.

[32]  D. Hashizume,et al.  Photophysics and photochemistry of biphenylyl triphenylphosphine gold(I) complexes , 2007 .

[33]  Vivian Wing-Wah Yam,et al.  Synthesis, characterisation, electrochemistry and luminescence studies of 9-anthrylgold(_i) complexes , 2005, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[34]  J. Fettinger,et al.  A reversible polymorphic phase change which affects the luminescence and aurophilic interactions in the gold (I) cluster complex, [mu3-S(AuCNC7H13)3](SbF6). , 2005, Journal of the American Chemical Society.

[35]  Hsiu-Yi Chao,et al.  Organic triplet emissions of arylacetylide moieties harnessed through coordination to [Au(PCy(3))]+. Effect of molecular structure upon photoluminescent properties. , 2002, Journal of the American Chemical Society.

[36]  G. Meyer,et al.  MLCT excited states of cuprous bis-phenanthroline coordination compounds , 2000 .

[37]  Vivian Wing-Wah Yam,et al.  Luminescent polynuclear d10 metal complexes , 1999 .

[38]  M. J. Irwin,et al.  Luminescent Gold(I) Acetylides: From Model Compounds to Polymers , 1997 .