On Weakly Cancellative Fuzzy Logics

Starting from a decomposition result of monoidal t-norm-based logic (MTL)-chains as ordinal sums, we focus our attention on a particular kind of indecomposable semihoops, namely weakly cancellative semihoops. The weak cancellation property is proved to be the difference between cancellation and pseudocomplementation, so it gives a new axiomatization of product logic and ΠMTL. By adding this property, some new fuzzy logics (propositional and first-order) are defined and studied obtaining some results about their (finite) strong standard completeness and other logical and algebraic properties.

[1]  C. Chang,et al.  Algebraic analysis of many valued logics , 1958 .

[2]  Michael Dummett,et al.  A propositional calculus with denumerable matrix , 1959, Journal of Symbolic Logic (JSL).

[3]  Louise Schmir Hay,et al.  Axiomatization of the infinite-valued predicate calculus , 1963, Journal of Symbolic Logic.

[4]  Stanley Burris,et al.  A course in universal algebra , 1981, Graduate texts in mathematics.

[5]  Yuichi Komori Super-Łukasiewicz propositional logics , 1981, Nagoya Mathematical Journal.

[6]  Petr Hájek,et al.  Metamathematics of First-Order Arithmetic , 1993, Perspectives in mathematical logic.

[7]  Petr Hájek,et al.  A complete many-valued logic with product-conjunction , 1996, Arch. Math. Log..

[8]  Jan Krajícek,et al.  Embedding Logics into Product Logic , 1998, Stud Logica.

[9]  Petr Hájek,et al.  Metamathematics of Fuzzy Logic , 1998, Trends in Logic.

[10]  Lluis Godo,et al.  Basic Fuzzy Logic is the logic of continuous t-norms and their residua , 2000, Soft Comput..

[11]  Willem J. Blok,et al.  The finite embeddability property for residuated lattices, pocrims and BCK-algebras , 2002, Reports Math. Log..

[12]  Petr Hájek,et al.  Residuated fuzzy logics with an involutive negation , 2000, Arch. Math. Log..

[13]  W. Blok,et al.  On the structure of hoops , 2000 .

[14]  Christian Eitzinger,et al.  Triangular Norms , 2001, Künstliche Intell..

[15]  Petr Cintula About axiomatic systems of product fuzzy logic , 2001, Soft Comput..

[16]  Petr Hájek Fuzzy Logic and Arithmetical Hierarchy III , 2001, Stud Logica.

[17]  Lluis Godo,et al.  Monoidal t-norm based logic: towards a logic for left-continuous t-norms , 2001, Fuzzy Sets Syst..

[18]  K. Evans,et al.  Totally Ordered Commutative Monoids , 2001 .

[19]  Franco Montagna,et al.  A Proof of Standard Completeness for Esteva and Godo's Logic MTL , 2002, Stud Logica.

[20]  Franco Montagna,et al.  Kripke Semantics, Undecidability and Standard Completeness for Esteva and Godo's Logic MTL∀ , 2002, Stud Logica.

[21]  Joan GISPERT I BRASÓ AXIOMATIC EXTENSIONS OF THE NILPOTENT MINIMUM LOGIC , 2002 .

[22]  P. Aglianò,et al.  Varieties of BL- algebras I: General properties. , 2003 .

[23]  L. Godo,et al.  On the hierarchy of t-norm based residuated fuzzy logics , 2003 .

[24]  C. Tsinakis,et al.  Cancellative residuated lattices , 2003 .

[25]  Franco Montagna,et al.  Hoops and Fuzzy Logic , 2003, J. Log. Comput..

[26]  Franco Montagna,et al.  Equational Characterization of the Subvarieties of BL Generated by t-norm Algebras , 2004, Stud Logica.

[27]  Yuichi Komori SUPER-LUKASIEWICZ PROPOSITIONAL LOGICS , 2004 .

[28]  Antoni Torrens Torrell,et al.  Axiomatic Extensions of IMT3 Logic , 2005, Stud Logica.

[29]  Carles Noguera,et al.  Perfect and bipartite IMTL-algebras and disconnected rotations of prelinear semihoops , 2005, Arch. Math. Log..

[30]  C. Tsinakis,et al.  Generalized MV-algebras , 2005 .

[31]  Rostislav Horcík Standard completeness theorem for ΠMTL , 2005, Arch. Math. Log..

[32]  Àngel García-Cerdaña,et al.  On the scope of some formulas defining additive connectives in fuzzy logics , 2005, Fuzzy Sets Syst..

[33]  Franco Montagna Generating the variety of BL-algebras , 2005, Soft Comput..

[34]  Carles Noguera,et al.  On Some Varieties of MTL-algebras , 2005, Log. J. IGPL.

[35]  Hiroakira Ono,et al.  Algebraization, Parametrized Local Deduction Theorem and Interpolation for Substructural Logics over FL , 2006, Stud Logica.

[36]  Rostislav Horcík Decidability of Cancellative Extension of Monoidal T-norm Based Logic , 2006, Log. J. IGPL.

[37]  Franco Montagna,et al.  Basic Hoops: an Algebraic Study of Continuous t-norms , 2007, Stud Logica.