The Fish Canyon Magma Body, San Juan Volcanic Field, Colorado: Rejuvenation and Eruption of an Upper-Crustal Batholith

from >5·5–6 to 7·7–8·5 wt % Al2O3). Homogeneity in magma More than 5000 km of nearly compositionally homogeneous crystalcomposition at the chamber-wide scale, contrasting with extreme rich dacite (>68 wt % SiO2: >45% Pl + Kfs + Qtz + textural and chemical complexities at the centimeter–millimeter scale, Hbl + Bt + Spn + Mag + Ilm + Ap + Zrn + Po) is consistent with a dynamic environment, wherein crystals with a erupted from the Fish Canyon magma body during three phases: (1) variety of growth and resorption histories were juxtaposed shortly the pre-caldera Pagosa Peak Dacite (an unusual poorly fragmented before eruption by convective currents. pyroclastic deposit, >200 km); (2) the syn-collapse Fish Canyon Tuff (one of the largest known ignimbrites, >5000 km); (3) the post-collapse Nutras Creek Dacite (a volumetrically minor lava). The late evolution of the Fish Canyon magma is characterized by

[1]  R. Sparks,et al.  Mineral disequilibrium in lavas explained by convective self-mixing in open magma chambers , 2001, Nature.

[2]  M. Lanphere,et al.  Precise K–Ar, 40Ar/39Ar, Rb–Sr and U/Pb mineral ages from the 27.5 Ma Fish Canyon Tuff reference standard , 2001 .

[3]  R. Trumbull,et al.  Magmatic Evolution of the La Pacana Caldera System, Central Andes, Chile: Compositional Variation of Two Cogenetic, Large-Volume Felsic Ignimbrites , 2001 .

[4]  J. Blundy,et al.  Ascent-driven crystallisation of dacite magmas at Mount St Helens, 1980–1986 , 2001, Contributions to Mineralogy and Petrology.

[5]  J. Eichelberger,et al.  Magmas in collision: Rethinking chemical zonation in silicic magmas , 2000 .

[6]  J. Blundy,et al.  Degassing and crystallization of ascending andesite and dacite , 2000, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  P. Lipman,et al.  Voluminous lava-like precursor to a major ash-flow tuff: low-column pyroclastic eruption of the Pagosa Peak Dacite, San Juan volcanic field, Colorado , 2000 .

[8]  M. Reid,et al.  In situ U-Pb ages of zircons from the Bishop Tuff: No evidence for long crystal residence times , 2000 .

[9]  A. T. Anderson,et al.  Evolution of Bishop Tuff Rhyolitic Magma Based on Melt and Magnetite Inclusions and Zoned Phenocrysts , 2000 .

[10]  M. D. Murphy,et al.  Remobilization of Andesite Magma by Intrusion of Mafic Magma at the Soufriere Hills Volcano, Montserrat, West Indies , 2000 .

[11]  P. Lipman Central San Juan caldera cluster: regional volcanic framework , 2000 .

[12]  F. C. Rodríguez The petrology and geochemistry of diverse crustal xenoliths, Tatara-San Pedro volcanic complex, Chilean Andes , 2000 .

[13]  R. S. J. Sparks,et al.  The Piedras Grandes–Soncor Eruptions, Lascar Volcano, Chile; Evolution of a Zoned Magma Chamber in the Central Andean Upper Crust , 1999 .

[14]  J. McPhie,et al.  Partially melted lithic megablocks in the Yardea Dacite, Gawler Range Volcanics, Australia: implications for eruption and emplacement mechanisms , 1999 .

[15]  I. Fletcher,et al.  SHRIMP U-Pb dating of the preeruption growth history of zircons from the 340 ka Whakamaru Ignimbrite, New Zealand: Evidence for >250 k.y. magma residence times , 1999 .

[16]  D. Robinson,et al.  Record of magma chamber processes preserved in accessory mineral assemblages, Aztec Wash pluton, Nevada , 1999 .

[17]  B. W. Evans,et al.  The 15 June 1991 Eruption of Mount Pinatubo. I. Phase Equilibria and Pre-eruption P–T–fO2–fH2O Conditions of the Dacite Magma , 1999 .

[18]  T. Koyaguchi,et al.  A Two-stage Thermal Evolution Model of Magmas in Continental Crust , 1999 .

[19]  I. Bindeman Convection and Redistribution of Alkalis and Trace Elements during the Mingling of Basaltic and Rhyolite Melts , 1999 .

[20]  J. Lowenstern,et al.  Comagmatic A-type Granophyre and Rhyolite from the Alid Volcanic Center, Eritrea, Northeast Africa , 1997 .

[21]  P. Lipman,et al.  COMAGMATIC GRANOPHYRIC GRANITE IN THE FISH CANYON TUFF, COLORADO : IMPLICATIONS FOR MAGMA-CHAMBER PROCESSES DURING A LARGE ASH-FLOW ERUPTION , 1997 .

[22]  T. Harrison,et al.  Prolonged residence times for the youngest rhyolites associated with Long Valley Caldera:230Th—238U ion microprobe dating of young zircons , 1997 .

[23]  J. Ague Thermodynamic calculation of emplacement pressures for batholithic rocks, California: Implications for the aluminum-in-hornblende barometer , 1997 .

[24]  R. Wiebe,et al.  Enclaves in the Cadillac Mountain Granite (Coastal Maine): Samples of Hybrid Magma from the Base of the Chamber , 1997 .

[25]  E. Christiansen,et al.  Origin of broken phenocrysts in ash-flow tuffs , 1997 .

[26]  M. Dungan,et al.  Compositional and Dynamic Controls on Mafic—Silicic Magma Interactions at Continental Arc Volcanoes: Evidence from Cordón El Guadal, Tatara-San Pedro Complex, Chile , 1996 .

[27]  P. Lipman,et al.  Recurrent eruption and subsidence at the Platoro caldera complex, southeastern San Juan volcanic field, Colorado: New tales from old tuffs , 1996 .

[28]  J. Icenhower,et al.  Experimental partitioning of Rb, Cs, Sr, and Ba between alkali feldspar and peraluminous melt , 1996 .

[29]  Status of thermobarometry in granitic batholiths , 1996 .

[30]  F. Holtz,et al.  Petrogenesis and experimental petrology of granitic rocks , 1996 .

[31]  P. Bogaard,et al.  40Ar/39Ar laser probe ages of Bishop Tuff quartz phenocrysts substantiate long-lived silicic magma chamber at Long Valley, United States , 1995 .

[32]  L. Riciputi,et al.  Crustal and magmatic evolution in a large multicyclic caldera complex: isotopic evidence from the central San Juan volcanic field , 1995 .

[33]  J. Anderson,et al.  The Effects of Temperature and ƒ O 2 on the Al-in-Hornblende Barometer , 1995 .

[34]  J. Wolff,et al.  Is the Valles caldera entering a new cycle of activity , 1995 .

[35]  R. Wiebe Silicic Magma Chambers as Traps for Basaltic Magmas: The Cadillac Mountain Intrusive Complex, Mount Desert Island, Maine , 1994, The Journal of Geology.

[36]  H. Nekvasil,et al.  SOLVCALC: an interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry , 1994 .

[37]  T. Holland,et al.  Non-ideal interactions in calcic amphiboles and their bearing on amphibole-plagioclase thermometry , 1994 .

[38]  G. Bergantz,et al.  Aspects of magma generation and ascent in continental lithosphere , 1994 .

[39]  Y. Podladchikov,et al.  Crustal anatexis during the influx of mantle volatiles , 1993 .

[40]  C. Hawkesworth,et al.  Basic and intermediate volcanism of the Mogollon-Datil volcanic field: implications for mid-Tertiary tectonic transitions in southwestern New Mexico, USA , 1993, Geological Society, London, Special Publications.

[41]  N. Dunbar,et al.  Volatile and Trace Element Composition of Melt Inclusions From the Lower Bandelier Tuff: Implications for Magma Chamber Processes and Eruptive Style , 1992 .

[42]  J. Stimac,et al.  Origin of mantle (rapakivi) feldspars: experimental evidence of a dissolution- and diffusion-controlled mechanism , 1992 .

[43]  J. Stimac,et al.  Plagioclase mantles on sanidine in silicic lavas, Clear Lake, California: Implications for the origin of rapakivi texture , 1992 .

[44]  M. Schmidt Amphibole composition in tonalite as a function of pressure: an experimental calibration of the Al-in-hornblende barometer , 1992 .

[45]  C. Bacon Partially melted granodiorite and related rocks ejected from Crater Lake caldera, Oregon , 1992, Earth and Environmental Science Transactions of the Royal Society of Edinburgh.

[46]  W. Hildreth,et al.  Modelling the petrogenesis of high Rb/Sr silicic magmas , 1991 .

[47]  P. Lipman,et al.  Precaldera lavas of the southeast San Juan Volcanic Field: Parent magmas and crustal interactions , 1991 .

[48]  M. Roden,et al.  Petrology and geochemistry of the Huerto Andesite, San Juan volcanic field, Colorado , 1991 .

[49]  T. Housh,et al.  Plagioclase-melt equilibria in hydrous systems. , 1991 .

[50]  H. McSween,et al.  Hornblende chemistry in southern Appalachian granitoids; implications for aluminum hornblende thermobarometry and magmatic epidote stability , 1991 .

[51]  D. Silva Styles of zoning in central Andean ignimbrites - Insights into magma chamber processes , 1991 .

[52]  G. Mahood,et al.  Development of the Long Valley, California, magma chamber recorded in precaldera rhyolite lavas of Glass Mountain , 1991 .

[53]  B. Wood,et al.  Crystal-chemical controls on the partitioning of Sr and Ba between plagioclase feldspar, silicate melts, and hydrothermal solutions , 1991 .

[54]  C. Rapela,et al.  Andean magmatism and its tectonic setting , 1991 .

[55]  G. Mahood Second reply to comment of R.S.J. Sparks, H.E. Huppert and C.J.N. Wilson on ``Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in the precaldera lavas of Glass Mountain'' , 1990 .

[56]  H. Huppert,et al.  Comment on "Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain" by A.N. Halliday, G.A. Mahood, P. Holden, J.M. Metz, T.J. Dempster and J.P. Davidson , 1990 .

[57]  A. Halliday Reply to comment of R.S.J. Sparks, H.E. Huppert, and C.J.N. Wilson on “Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain” , 1990 .

[58]  T. Grove,et al.  Ternary feldspar experiments and thermodynamic models , 1990 .

[59]  T. Holland,et al.  Calcic amphibole equilibria and a new amphibole-plagioclase geothermometer , 1990 .

[60]  G. Mahood,et al.  Evidence for long residence times of rhyolitic magma in the Long Valley magmatic system: the isotopic record in precaldera lavas of Glass Mountain , 1989 .

[61]  P. Francis,et al.  Petrology and geochemistry of volcanic rocks of the Cerro Galan caldera, northwest Argentina , 1989, Geological Magazine.

[62]  Marie C. Johnson,et al.  Experimental calibration of the aluminum-in-hornblende geobarometer with application , 1989 .

[63]  A. Saunders,et al.  Magmatism in the Ocean Basins , 1989 .

[64]  Marie C. Johnson,et al.  Experimentally Determined Conditions in the Fish Canyon Tuff, Colorado, Magma Chamber , 1989 .

[65]  W. McDonough,et al.  Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes , 1989, Geological Society, London, Special Publications.

[66]  G. Davies,et al.  Isotope disequilibrium during anatexis: a case study of contact melting , 1997 .

[67]  J. Devine,et al.  The May 18, 1980, eruption of Mount St. Helens: 3. Stability and chemistry of amphibole in the magma chamber , 1988 .

[68]  C. Lesher,et al.  Assimilation of granite by basaltic magma at Burnt Lava flow, Medicine Lake volcano, northern California: Decoupling of heat and mass transfer , 1988 .

[69]  G. Hanson,et al.  Disequilibrium Melting of Granite at the Contact with a Basic Plug: A Geochemical and Petrographic Study , 1988, The Journal of Geology.

[70]  J. Clemens,et al.  Constraints on melting and magma production in the crust , 1987 .

[71]  D. R. Boden,et al.  Comment on ‘ … Magmatic Conditions of the Fish Canyon Tuff, Central San Juan Volcanic Field, Colorado ’ by Whitney & Stormer (1985) , 1987 .

[72]  L. Hollister,et al.  Confirmation of the empirical correlation of Al in hornblende with pressure of solidification of calc-alkaline plutons , 1987 .

[73]  E. Zen,et al.  Aluminum in hornblende; an empirical igneous geobarometer , 1986 .

[74]  H. Crecraft,et al.  Partition coefficients for trace elements in silicic magmas , 1985 .

[75]  J. Stormer,et al.  Mineralogy, Petrology, and Magmatic Conditions from the Fish Canyon Tuff, Central San Juan Volcanic Field, Colorado , 1985 .

[76]  J. Stormer,et al.  Two feldspar and iron-titanium oxide equilibria in silicic magmas and the depth of origin of large volume ash-flow tuffs , 1985 .

[77]  S. Taylor,et al.  The continental crust: Its composition and evolution , 1985 .

[78]  J. Munoz F-OH and Cl-OH exchange in micas with applications to hydrothermal ore deposits , 1984 .

[79]  J. Stormer,et al.  Igneous sulfides in the Fish Canyon Tuff and the role of sulfur in calc-alkaline magmas , 1983 .

[80]  E. Watson Basalt contamination by continental crust: Some experiments and models , 1982 .

[81]  W. Hildreth Gradients in silicic magma chambers: Implications for lithospheric magmatism , 1981 .

[82]  F. Spear An experimental study of hornblende stability and compositional variability in amphibolite , 1981 .

[83]  R. Knox,et al.  Petrology for Students , 1978 .

[84]  P. Lipman,et al.  Petrologic evolution of the San Juan volcanic field, southwestern Colorado: Pb and Sr isotope evidence , 1978 .

[85]  T. Steven Middle Tertiary Volcanic Field in the Southern Rocky Mountains , 1975 .

[86]  P. Lipman,et al.  Calderas of the San Juan volcanic field, southwestern Colorado , 1975 .

[87]  P. Lipman Evolution of the Platoro caldera complex and related volcanic rocks, southeastern San Juan Mountains, Colorado , 1975 .

[88]  G. Czamanske,et al.  Oxidation During Magmatic Differentiation, Finnmarka Complex, Oslo Area, Norway: Part 2, The Mafic Silicates1 , 1973 .

[89]  P. Lipman,et al.  A Discussion on volcanism and the structure of the Earth - Cenozoic volcanism and plate-tectonic evolution of the Western United States. I. Early and middle cenozoic , 1972, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[90]  H. H. Mehnert,et al.  Volcanic History of the San Juan Mountains, Colorado, as Indicated by Potassium–Argon Dating , 1970 .

[91]  J. Keller Origin of rhyolites by anatectic melting of granitic crustal rocks , 1969 .

[92]  H. Backlund The Problems of the Rapakivi Granites , 1938, The Journal of Geology.